Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan

Internet has been used as a medium for electronic transaction.Electronic security system such as digital signature has been used to control on-line transaction. Digital signature is a string of bit that represents another string of bit.However, due to security concerns such as human error, storage...

Full description

Saved in:
Bibliographic Details
Main Authors: Siraj, Fadzilah, Wan Ishak, Wan Hussain, Mat Yatim, Fadzilah
Format: Article
Language:English
Published: Fakulti Sains Komputer dan Sistem Maklumat, Universiti Teknologi Malaysia 2001
Subjects:
Online Access:http://repo.uum.edu.my/3300/1/Fad1.pdf
http://repo.uum.edu.my/3300/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uum.repo.3300
record_format eprints
spelling my.uum.repo.33002011-06-01T05:43:27Z http://repo.uum.edu.my/3300/ Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan Siraj, Fadzilah Wan Ishak, Wan Hussain Mat Yatim, Fadzilah QA76 Computer software Internet has been used as a medium for electronic transaction.Electronic security system such as digital signature has been used to control on-line transaction. Digital signature is a string of bit that represents another string of bit.However, due to security concerns such as human error, storage and code breaking, it is vital to explore a new technology to enhance security for on-line transaction.This paper discusses neural networks model for on-line handwritten signature verification.Several neural networks model have been identified and tested to choose the suitable neural network model for on-line handwritten signature verification. Fakulti Sains Komputer dan Sistem Maklumat, Universiti Teknologi Malaysia 2001-06 Article PeerReviewed application/pdf en http://repo.uum.edu.my/3300/1/Fad1.pdf Siraj, Fadzilah and Wan Ishak, Wan Hussain and Mat Yatim, Fadzilah (2001) Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan. Jurnal Teknologi Maklumat, 13 (1). pp. 23-41. ISSN 1028-3790
institution Universiti Utara Malaysia
building UUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Utara Malaysia
content_source UUM Institutionali Repository
url_provider http://repo.uum.edu.my/
language English
topic QA76 Computer software
spellingShingle QA76 Computer software
Siraj, Fadzilah
Wan Ishak, Wan Hussain
Mat Yatim, Fadzilah
Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan
description Internet has been used as a medium for electronic transaction.Electronic security system such as digital signature has been used to control on-line transaction. Digital signature is a string of bit that represents another string of bit.However, due to security concerns such as human error, storage and code breaking, it is vital to explore a new technology to enhance security for on-line transaction.This paper discusses neural networks model for on-line handwritten signature verification.Several neural networks model have been identified and tested to choose the suitable neural network model for on-line handwritten signature verification.
format Article
author Siraj, Fadzilah
Wan Ishak, Wan Hussain
Mat Yatim, Fadzilah
author_facet Siraj, Fadzilah
Wan Ishak, Wan Hussain
Mat Yatim, Fadzilah
author_sort Siraj, Fadzilah
title Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan
title_short Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan
title_full Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan
title_fullStr Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan
title_full_unstemmed Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan
title_sort pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan
publisher Fakulti Sains Komputer dan Sistem Maklumat, Universiti Teknologi Malaysia
publishDate 2001
url http://repo.uum.edu.my/3300/1/Fad1.pdf
http://repo.uum.edu.my/3300/
_version_ 1644278465519681536
score 13.211869