Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan
Internet has been used as a medium for electronic transaction.Electronic security system such as digital signature has been used to control on-line transaction. Digital signature is a string of bit that represents another string of bit.However, due to security concerns such as human error, storage...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Fakulti Sains Komputer dan Sistem Maklumat, Universiti Teknologi Malaysia
2001
|
Subjects: | |
Online Access: | http://repo.uum.edu.my/3300/1/Fad1.pdf http://repo.uum.edu.my/3300/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uum.repo.3300 |
---|---|
record_format |
eprints |
spelling |
my.uum.repo.33002011-06-01T05:43:27Z http://repo.uum.edu.my/3300/ Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan Siraj, Fadzilah Wan Ishak, Wan Hussain Mat Yatim, Fadzilah QA76 Computer software Internet has been used as a medium for electronic transaction.Electronic security system such as digital signature has been used to control on-line transaction. Digital signature is a string of bit that represents another string of bit.However, due to security concerns such as human error, storage and code breaking, it is vital to explore a new technology to enhance security for on-line transaction.This paper discusses neural networks model for on-line handwritten signature verification.Several neural networks model have been identified and tested to choose the suitable neural network model for on-line handwritten signature verification. Fakulti Sains Komputer dan Sistem Maklumat, Universiti Teknologi Malaysia 2001-06 Article PeerReviewed application/pdf en http://repo.uum.edu.my/3300/1/Fad1.pdf Siraj, Fadzilah and Wan Ishak, Wan Hussain and Mat Yatim, Fadzilah (2001) Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan. Jurnal Teknologi Maklumat, 13 (1). pp. 23-41. ISSN 1028-3790 |
institution |
Universiti Utara Malaysia |
building |
UUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Utara Malaysia |
content_source |
UUM Institutionali Repository |
url_provider |
http://repo.uum.edu.my/ |
language |
English |
topic |
QA76 Computer software |
spellingShingle |
QA76 Computer software Siraj, Fadzilah Wan Ishak, Wan Hussain Mat Yatim, Fadzilah Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan |
description |
Internet has been used as a medium for electronic transaction.Electronic security system such as digital signature has been used to control on-line transaction. Digital signature is a string of bit that represents another string of bit.However, due to security concerns
such as human error, storage and code breaking, it is vital to explore a new technology to enhance security for on-line transaction.This paper discusses neural networks model
for on-line handwritten signature verification.Several neural networks model have been identified and tested to choose the suitable neural network model for on-line handwritten signature verification. |
format |
Article |
author |
Siraj, Fadzilah Wan Ishak, Wan Hussain Mat Yatim, Fadzilah |
author_facet |
Siraj, Fadzilah Wan Ishak, Wan Hussain Mat Yatim, Fadzilah |
author_sort |
Siraj, Fadzilah |
title |
Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan |
title_short |
Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan |
title_full |
Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan |
title_fullStr |
Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan |
title_full_unstemmed |
Pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan |
title_sort |
pendekatan rangkaian neural bagi sistem pengecaman tandatangan tulisan tangan |
publisher |
Fakulti Sains Komputer dan Sistem Maklumat, Universiti Teknologi Malaysia |
publishDate |
2001 |
url |
http://repo.uum.edu.my/3300/1/Fad1.pdf http://repo.uum.edu.my/3300/ |
_version_ |
1644278465519681536 |
score |
13.211869 |