High-order RTV-FUZZY time series forecasting model based on trend variation
Time series data principally involves four major components which are trend, cyclical, seasonal and irregular, that reflects the characteristics of the data. Ignoring the systematic analysis of patterns from time series components will affect forecasting accuracy. Thus, this paper proposes a high-o...
Saved in:
Main Authors: | Ali, Noor Rasidah, Ku-Mahamud, Ku Ruhana |
---|---|
格式: | Article |
語言: | English |
出版: |
Little Lion Scientific
2018
|
主題: | |
在線閱讀: | http://repo.uum.edu.my/27871/1/JTAIT%2096%2021%202018%207151%207163.pdf http://repo.uum.edu.my/27871/ http://www.jatit.org/volumes/ninetysix21.php |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Spatial Clustering Algorithm for Time Series Rainfall Data Using X-Means Data Splitting
由: Ali, Noor Rasidah, et al.
出版: (2017) -
A Hybrid Fuzzy Time Series Model for Forecasting
由: Saima, H, et al.
出版: (2012) -
Fuzzy subjective evaluation of Asia Pacific airport services
由: Ku-Mahamud, Ku Ruhana, et al.
出版: (2010) -
Fuzzy multi criteria evaluation for performance of bus companies
由: Othman, Mahmod, et al.
出版: (2010) -
Reservoir water level forecasting using normalization and multiple regression
由: M Dawam, Siti Rafidah, et al.
出版: (2019)