Modified one-step M-estimator with robust scale estimator for multivariate data

The Modified One-step M-estimator (MOM) is a highly efficient robust estimator for classifying multivariate data. Generally, robust estimators came into existence as a solution to the inability of classical Linear Discriminant Analysis (LDA) to perform optimally in the presence of outliers. Thus, to...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Melik, Hameedah Naeem, Ahad, Nor Aishah, Syed Yahaya, Sharipah Soaad
التنسيق: مقال
اللغة:English
منشور في: Medwell Publishing 2018
الموضوعات:
الوصول للمادة أونلاين:http://repo.uum.edu.my/27550/1/JEAS%2013%2024%202018%2010396-10400.pdf
http://repo.uum.edu.my/27550/
http://doi.org/10.35940/ijitee.J9588.0881019
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The Modified One-step M-estimator (MOM) is a highly efficient robust estimator for classifying multivariate data. Generally, robust estimators came into existence as a solution to the inability of classical Linear Discriminant Analysis (LDA) to perform optimally in the presence of outliers. Thus, to solve this shortcoming, the robust MOM estimator is integrated with a highly robust scale estimator, Qn, in the trimming criterion of MOM. This introduces a new robust approach termed RLDAMQ for handling outliers encountered in multivariate data. The results show the superiority of RLDAMQ over the classical LDA and previously existing robust method in literature in terms of misclassification error evaluated through simulated data.