Using principal component analysis to extract mixed variables for smoothed location model
This study is conducted to test the appropriateness of variables extraction technique called principal component analysis to keep adequate number of variables for construction of the smoothed location model when the measured variables are mixed and large, particularly the binary.The strategy of perf...
محفوظ في:
المؤلفون الرئيسيون: | Hamid, Hashibah, Mahat, Nor Idayu |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Pushpa Publishing House
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://repo.uum.edu.my/21572/1/FJMS%20%2080%201%202013%2033%2054.pdf http://repo.uum.edu.my/21572/ http://www.pphmj.com/abstract/7952.htm |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Variable extractions using principal component analysis and multiple correspondence analysis for large number of mixed variables classification problems
بواسطة: Hamid, Hashibah, وآخرون
منشور في: (2016) -
Principal component and multiple correspondence analysis for handling mixed variables in the smoothed location model
بواسطة: Ngu, Penny Ai Huong
منشور في: (2016) -
Winsorized and Smoothed Estimation of the Location Model in Mixed Variables Discrimination
بواسطة: Hamid, Hashibah
منشور في: (2018) -
Variables extraction on large binary variables in discriminant analysis based on mixed variables location model
بواسطة: Long, Mei Mei, وآخرون
منشور في: (2015) -
Multiple correspondence analysis for handling large binary variables in smoothed location model
بواسطة: Ngu, Penny Ai Huong, وآخرون
منشور في: (2015)