Using principal component analysis to extract mixed variables for smoothed location model
This study is conducted to test the appropriateness of variables extraction technique called principal component analysis to keep adequate number of variables for construction of the smoothed location model when the measured variables are mixed and large, particularly the binary.The strategy of perf...
Saved in:
Main Authors: | Hamid, Hashibah, Mahat, Nor Idayu |
---|---|
格式: | Article |
語言: | English |
出版: |
Pushpa Publishing House
2013
|
主題: | |
在線閱讀: | http://repo.uum.edu.my/21572/1/FJMS%20%2080%201%202013%2033%2054.pdf http://repo.uum.edu.my/21572/ http://www.pphmj.com/abstract/7952.htm |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Variable extractions using principal component analysis and multiple correspondence analysis for large number of mixed variables classification problems
由: Hamid, Hashibah, et al.
出版: (2016) -
Principal component and multiple correspondence analysis for handling mixed variables in the smoothed location model
由: Ngu, Penny Ai Huong
出版: (2016) -
Winsorized and Smoothed Estimation of the Location Model in Mixed Variables Discrimination
由: Hamid, Hashibah
出版: (2018) -
Variables extraction on large binary variables in discriminant analysis based on mixed variables location model
由: Long, Mei Mei, et al.
出版: (2015) -
Multiple correspondence analysis for handling large binary variables in smoothed location model
由: Ngu, Penny Ai Huong, et al.
出版: (2015)