Gene selection for high dimensional data using k-means clustering algorithm and statistical approach
Microarray technology can measure thousands of genes which are useful for biologist to study and classify the cancer cells.However, this high dimensional data consists of large number of genes to be examined in regard of small samples size. Thus, selection of relevant genes is a challenging issue in...
Saved in:
Main Authors: | Ahmad, Farzana Kabir, Yusof, Yuhanis, Othman, Nor Hayati |
---|---|
格式: | Conference or Workshop Item |
语言: | English |
出版: |
2014
|
主题: | |
在线阅读: | http://repo.uum.edu.my/16491/1/IEEE1.pdf http://repo.uum.edu.my/16491/ http://doi.org/10.1109/ICCST.2014.7045188 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Clustering Student Performance Data Using k-Means Algorithms
由: Sultan Alalawi, Sultan Juma, et al.
出版: (2023) -
Integrated bisect K-means and firefly algorithm for hierarchical text clustering
由: Mohammed, Athraa Jasim, et al.
出版: (2016) -
Clustering High Dimensional Data Using Subspace And Projected Clustering Algorithms
由: Sembiring, Rahmat Widia, et al.
出版: (2010) -
Filter-Based Gene Selection Method for Tissues Classification on Large Scale Gene Expression Data
由: Kabir Ahmad, Farzana, et al.
出版: (2018) -
Max-D clustering K-means algorithm for Autogeneration of Centroids and Distance of Data Points Cluster
由: Wan Maseri, Wan Mohd, et al.