Low and high level hybridization of ant colony system and genetic algorithm for job scheduling in grid computing

Hybrid metaheuristic algorithms have the ability to produce better solution than stand-alone approach and no algorithm could be concluded as the best algorithm for scheduling algorithm or in general, for combinatorial problems.This study presents the low and high level hybridization of ant colony sy...

Full description

Saved in:
Bibliographic Details
Main Authors: Alobaedy, Mustafa Muwafak, Ku-Mahamud, Ku Ruhana
Format: Conference or Workshop Item
Language:English
Published: 2015
Subjects:
Online Access:http://repo.uum.edu.my/15572/1/PID164.pdf
http://repo.uum.edu.my/15572/
http://www.icoci.cms.net.my/proceedings/2015/TOC.html
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybrid metaheuristic algorithms have the ability to produce better solution than stand-alone approach and no algorithm could be concluded as the best algorithm for scheduling algorithm or in general, for combinatorial problems.This study presents the low and high level hybridization of ant colony system and genetic algorithm in solving the job scheduling in grid computing.Two hybrid algorithms namely ACS(GA) as a low level and ACS+GA as a high level are proposed.The proposed algorithms were evaluated using static benchmarks problems known as expected time to compute model. Experimental results show that ant colony system algorithm performance is enhanced when hybridized with genetic algorithm specifically with high level hybridization.