Irrelevant feature and rule removal for structural associative classification
In the classification task, the presence of irrelevant features can significantly degrade the performance of classification algorithms,in terms of additional processing time, more complex models and the likelihood that the models have poor generalization power due to the over fitting problem.Practi...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universiti Utara Malaysia
2015
|
Subjects: | |
Online Access: | http://repo.uum.edu.my/14313/1/95-110.pdf http://repo.uum.edu.my/14313/ http://jict.uum.edu.my |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uum.repo.14313 |
---|---|
record_format |
eprints |
spelling |
my.uum.repo.143132016-04-27T07:08:12Z http://repo.uum.edu.my/14313/ Irrelevant feature and rule removal for structural associative classification Mohd Shaharanee, Izwan Nizal Jamil, Jastini QA75 Electronic computers. Computer science In the classification task, the presence of irrelevant features can significantly degrade the performance of classification algorithms,in terms of additional processing time, more complex models and the likelihood that the models have poor generalization power due to the over fitting problem.Practical applications of association rule mining often suffer from overwhelming number of rules that are generated, many of which are not interesting or not useful for the application in question.Removing rules comprised of irrelevant features can significantly improve the overall performance.In this paper, we explore and compare the use of a feature selection measure to filter out unnecessary and irrelevant features/attributes prior to association rules generation.The experiments are performed using a number of real-world datasets that represent diverse characteristics of data items.Empirical results confirm that by utilizing feature subset selection prior to association rule generation, a large number of rules with irrelevant features can be eliminated.More importantly, the results reveal that removing rules that hold irrelevant features improve the accuracy rate and capability to retain the rule coverage rate of structural associative association. Universiti Utara Malaysia 2015 Article PeerReviewed application/pdf en http://repo.uum.edu.my/14313/1/95-110.pdf Mohd Shaharanee, Izwan Nizal and Jamil, Jastini (2015) Irrelevant feature and rule removal for structural associative classification. Journal of ICT, 14. pp. 95-110. ISSN 1675-414X http://jict.uum.edu.my |
institution |
Universiti Utara Malaysia |
building |
UUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Utara Malaysia |
content_source |
UUM Institutionali Repository |
url_provider |
http://repo.uum.edu.my/ |
language |
English |
topic |
QA75 Electronic computers. Computer science |
spellingShingle |
QA75 Electronic computers. Computer science Mohd Shaharanee, Izwan Nizal Jamil, Jastini Irrelevant feature and rule removal for structural associative classification |
description |
In the classification task, the presence of irrelevant features can significantly degrade the performance of classification algorithms,in terms of additional processing time, more complex models
and the likelihood that the models have poor generalization power due to the over fitting problem.Practical applications of association rule mining often suffer from overwhelming number of rules that are generated, many of which are not interesting or not useful for the application in question.Removing rules comprised of irrelevant features can significantly improve the overall performance.In this paper, we explore and compare
the use of a feature selection measure to filter out unnecessary and irrelevant features/attributes prior to association rules generation.The experiments are performed using a number
of real-world datasets that represent diverse characteristics of data items.Empirical results confirm that by utilizing feature subset selection prior to association rule generation, a large
number of rules with irrelevant features can be eliminated.More importantly, the results reveal that removing rules that hold irrelevant features improve the accuracy rate and capability to retain the rule coverage rate of structural associative association. |
format |
Article |
author |
Mohd Shaharanee, Izwan Nizal Jamil, Jastini |
author_facet |
Mohd Shaharanee, Izwan Nizal Jamil, Jastini |
author_sort |
Mohd Shaharanee, Izwan Nizal |
title |
Irrelevant feature and rule removal for structural associative classification |
title_short |
Irrelevant feature and rule removal for structural associative classification |
title_full |
Irrelevant feature and rule removal for structural associative classification |
title_fullStr |
Irrelevant feature and rule removal for structural associative classification |
title_full_unstemmed |
Irrelevant feature and rule removal for structural associative classification |
title_sort |
irrelevant feature and rule removal for structural associative classification |
publisher |
Universiti Utara Malaysia |
publishDate |
2015 |
url |
http://repo.uum.edu.my/14313/1/95-110.pdf http://repo.uum.edu.my/14313/ http://jict.uum.edu.my |
_version_ |
1644281416584790016 |
score |
13.211869 |