Interestingness measures for association rules based on statistical validity

Assessing rules with interestingness measures is the pillar of successful application of association rules discovery.However, association rules discovered are normally large in number, some of which are not considered as interesting or significant for the application at hand. In this paper, we pres...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd Shaharanee, Izwan Nizal, Hadzic, Fedja, Dillon, Tharam S.
Format: Article
Language:English
Published: Elsevier B.V 2011
Subjects:
Online Access:http://repo.uum.edu.my/12544/1/WP07.pdf
http://repo.uum.edu.my/12544/
http://dx.doi.org/10.1016/j.knosys.2010.11.005
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Assessing rules with interestingness measures is the pillar of successful application of association rules discovery.However, association rules discovered are normally large in number, some of which are not considered as interesting or significant for the application at hand. In this paper, we present a systematic approach to ascertain the discovered rules, and provide a precise statistical approach supporting this framework.The proposed strategy combines data mining and statistical measurement techniques, including redundancy analysis, sampling and multivariate statistical analysis, to discard the non significant rules.Moreover, we consider real world datasets which are characterized by the uniform and non- uniform data/items distribution with a mixture of measurement levels throughout the data/items.The proposed unified framework is applied on these datasets to demonstrate its effectiveness in discarding many of the redundant or non-significant rules, while still preserving the high accuracy of the rule set as a whole.