SWGARCH : an enhanced GARCH model for time series forecasting
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is one of most popular models for time series forecasting. The GARCH model uses the long run variance as one of the weights. Historical data is used to calculate the long run variance because it is assumed that the variance of a long...
Saved in:
主要作者: | |
---|---|
格式: | Thesis |
語言: | English English |
出版: |
2017
|
主題: | |
在線閱讀: | https://etd.uum.edu.my/6808/1/s91141_01.pdf https://etd.uum.edu.my/6808/2/s91141_02.pdf https://etd.uum.edu.my/6808/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|