SWGARCH : an enhanced GARCH model for time series forecasting

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is one of most popular models for time series forecasting. The GARCH model uses the long run variance as one of the weights. Historical data is used to calculate the long run variance because it is assumed that the variance of a long...

詳細記述

保存先:
書誌詳細
第一著者: Shbier, Mohammed Z. D
フォーマット: 学位論文
言語:English
English
出版事項: 2017
主題:
オンライン・アクセス:https://etd.uum.edu.my/6808/1/s91141_01.pdf
https://etd.uum.edu.my/6808/2/s91141_02.pdf
https://etd.uum.edu.my/6808/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!