Automated Geological Features Detection in 3D Seismic Data Using Semi-Supervised Learning

A geological interpretation plays an important role to gain information about the structural and stratigraphic of hydrocarbon reservoirs. However, this is a time-consuming task due to the com-plexity and size of seismic data. We propose a semi-supervised learning technique to automatically and accur...

Full description

Saved in:
Bibliographic Details
Main Authors: Pratama, H., Latiff, A.H.A.
Format: Article
Published: MDPI 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133677820&doi=10.3390%2fapp12136723&partnerID=40&md5=900b9ff5da770a934397bf14cdf6bfc5
http://eprints.utp.edu.my/33360/
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first