An improved intrusion detection approach using synthetic minority over-sampling technique and deep belief network
This paper presents a network intrusion detection technique based on Synthetic Minority Over-Sampling Technique (SMOTE) and Deep Belief Network (DBN) applied to a class imbalance KDD-99 dataset. SMOTE is used to eliminate the class imbalance problem while intrusion classification is performed using...
保存先:
主要な著者: | , , , |
---|---|
フォーマット: | 論文 |
出版事項: |
IOS Press
2014
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948783277&doi=10.3233%2f978-1-61499-434-3-94&partnerID=40&md5=95f8ccf40d3162ffa742623976dd0f66 http://eprints.utp.edu.my/31728/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|