Classification of skin cancer images using local binary pattern and SVM classifier

In this paper, a classification method for melanoma and non-melanoma skin cancer images has been presented using the local binary patterns (LBP). The LBP computes the local texture information from the skin cancer images, which is later used to compute some statistical features that have capability...

全面介紹

Saved in:
書目詳細資料
Main Authors: Adjed, F., Faye, I., Ababsa, F., Gardezi, S.J., Dass, S.C.
格式: Conference or Workshop Item
出版: American Institute of Physics Inc. 2016
在線閱讀:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85005943826&doi=10.1063%2f1.4968145&partnerID=40&md5=a5df4668199561ae3fd3740f91e8951a
http://eprints.utp.edu.my/30677/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In this paper, a classification method for melanoma and non-melanoma skin cancer images has been presented using the local binary patterns (LBP). The LBP computes the local texture information from the skin cancer images, which is later used to compute some statistical features that have capability to discriminate the melanoma and non-melanoma skin tissues. Support vector machine (SVM) is applied on the feature matrix for classification into two skin image classes (malignant and benign). The method achieves good classification accuracy of 76.1 with sensitivity of 75.6 and specificity of 76.7. © 2016 Author(s).