Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity

Neuroimaging investigations have proven that social anxiety disorder (SAD) is associated with aberrations in the connectivity of human brain functions. The assessment of the effective connectivity (EC) of the brain and its impact on the detection and medication of neurodegenerative pathophysiology i...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Ezzi, A., Yahya, N., Kamel, N., Faye, I., Alsaih, K., Gunaseli, E.
Format: Article
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117604106&doi=10.1109%2fACCESS.2021.3089358&partnerID=40&md5=2a641c01563dfed590ba2397cb1b9d93
http://eprints.utp.edu.my/30420/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.30420
record_format eprints
spelling my.utp.eprints.304202022-03-25T06:51:35Z Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity Al-Ezzi, A. Yahya, N. Kamel, N. Faye, I. Alsaih, K. Gunaseli, E. Neuroimaging investigations have proven that social anxiety disorder (SAD) is associated with aberrations in the connectivity of human brain functions. The assessment of the effective connectivity (EC) of the brain and its impact on the detection and medication of neurodegenerative pathophysiology is hence a crucial concern that needs to be addressed. Nevertheless, there are no clinically certain diagnostic biomarkers that can be linked to SAD. Therefore, investigating neural connectivity biomarkers of SAD based on deep learning models (DL) has a promising approach with its recent underlined potential results. In this study, an electroencephalography (EEG)-based detection model for SAD is constructed through directed causal influences combined with a deep convolutional neural network (CNN) and the long short-term memory (LSTM). The EEG data were classified by applying three different DL models, namely, CNN, LSTM, and CNN + LSTM to discriminate the severity of SAD (severe, moderate, mild) and healthy controls (HC) at different frequency bands (delta, theta, alpha, low beta, and high beta) in the default mode network (DMN) under resting-state condition. The DL model uses the EC features as input, which are derived from the cortical correlation within different EEG rhythms for certain cortical areas that are more susceptible to SAD. Experimental results revealed that the proposed model (CNN + LSTM) outperforms the other models in SAD recognition. For our dataset, the highest recognition accuracies of 92.86, 92.86, 96.43, and 89.29, specificities of 95.24, 95.24, 100, and 90.91, and sensitivities of 85.71, 85.71, 87.50, and 83.33 were achieved by using CNN + LSTM model for severe, moderate, mild, and HC, respectively. The fundamental contribution of this analysis is the characterization of neural brain features using different DL models to categorize the severity of SAD, which can represent a potential biomarker for SAD. © 2013 IEEE. © 2021 Institute of Electrical and Electronics Engineers Inc.. All rights reserved. Institute of Electrical and Electronics Engineers Inc. 2021 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117604106&doi=10.1109%2fACCESS.2021.3089358&partnerID=40&md5=2a641c01563dfed590ba2397cb1b9d93 Al-Ezzi, A. and Yahya, N. and Kamel, N. and Faye, I. and Alsaih, K. and Gunaseli, E. (2021) Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity. IEEE Access, 9 . pp. 86899-86913. http://eprints.utp.edu.my/30420/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Neuroimaging investigations have proven that social anxiety disorder (SAD) is associated with aberrations in the connectivity of human brain functions. The assessment of the effective connectivity (EC) of the brain and its impact on the detection and medication of neurodegenerative pathophysiology is hence a crucial concern that needs to be addressed. Nevertheless, there are no clinically certain diagnostic biomarkers that can be linked to SAD. Therefore, investigating neural connectivity biomarkers of SAD based on deep learning models (DL) has a promising approach with its recent underlined potential results. In this study, an electroencephalography (EEG)-based detection model for SAD is constructed through directed causal influences combined with a deep convolutional neural network (CNN) and the long short-term memory (LSTM). The EEG data were classified by applying three different DL models, namely, CNN, LSTM, and CNN + LSTM to discriminate the severity of SAD (severe, moderate, mild) and healthy controls (HC) at different frequency bands (delta, theta, alpha, low beta, and high beta) in the default mode network (DMN) under resting-state condition. The DL model uses the EC features as input, which are derived from the cortical correlation within different EEG rhythms for certain cortical areas that are more susceptible to SAD. Experimental results revealed that the proposed model (CNN + LSTM) outperforms the other models in SAD recognition. For our dataset, the highest recognition accuracies of 92.86, 92.86, 96.43, and 89.29, specificities of 95.24, 95.24, 100, and 90.91, and sensitivities of 85.71, 85.71, 87.50, and 83.33 were achieved by using CNN + LSTM model for severe, moderate, mild, and HC, respectively. The fundamental contribution of this analysis is the characterization of neural brain features using different DL models to categorize the severity of SAD, which can represent a potential biomarker for SAD. © 2013 IEEE. © 2021 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
format Article
author Al-Ezzi, A.
Yahya, N.
Kamel, N.
Faye, I.
Alsaih, K.
Gunaseli, E.
spellingShingle Al-Ezzi, A.
Yahya, N.
Kamel, N.
Faye, I.
Alsaih, K.
Gunaseli, E.
Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity
author_facet Al-Ezzi, A.
Yahya, N.
Kamel, N.
Faye, I.
Alsaih, K.
Gunaseli, E.
author_sort Al-Ezzi, A.
title Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity
title_short Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity
title_full Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity
title_fullStr Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity
title_full_unstemmed Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity
title_sort severity assessment of social anxiety disorder using deep learning models on brain effective connectivity
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2021
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117604106&doi=10.1109%2fACCESS.2021.3089358&partnerID=40&md5=2a641c01563dfed590ba2397cb1b9d93
http://eprints.utp.edu.my/30420/
_version_ 1738657104998170624
score 13.211869