Cross-Layer MAC/Routing Protocol for Reliable Communication in Internet of Health Things
Internet of Health Things (IoHT) involves intelligent, low-powered, and miniaturized sensors nodes that measure physiological signals and report them to sink nodes over wireless links. IoHTs have a myriad of applications in e-health and personal health monitoring. Because of the data's sensitiv...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112209470&doi=10.1109%2fOJCOMS.2020.3047888&partnerID=40&md5=b62eefd061dd0b106fb86f03a68879a6 http://eprints.utp.edu.my/30283/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Internet of Health Things (IoHT) involves intelligent, low-powered, and miniaturized sensors nodes that measure physiological signals and report them to sink nodes over wireless links. IoHTs have a myriad of applications in e-health and personal health monitoring. Because of the data's sensitivity measured by the nodes and power-constraints of the sensor nodes, reliability and energy-efficiency play a critical role in communication in IoHT. Reliability is degraded by the increase in packets' loss due to inefficient MAC, routing protocols, environmental interference, and body shadowing. Simultaneously, inefficient node selection for routing may cause the depletion of critical nodes' energy resources. Recent advancements in cross-layer protocol optimizations have proven their efficiency for packet-based Internet. In this article, we propose a MAC/Routing-based Cross-layer protocol for reliable communication while preserving the sensor nodes' energy resource in IoHT. The proposed mechanism employs a timer-based strategy for relay node selection. The timer-based approach incorporates the metrics for residual energy and received signal strength indicator to preserve the vital underlying resources of critical sensors in IoHT. The proposed approach is also extended for multiple sensor networks, where sensor in vicinity are coordinating and cooperating for data forwarding. The performance of the proposed technique is evaluated for metrics like Packet Loss Probability, End-To-End delay, and energy used per data packet. Extensive simulation results show that the proposed technique improves the reliability and energy-efficiency compared to the Simple Opportunistic Routing protocol. © 2020 IEEE. |
---|