Neuronal Unit of Thoughts (NUTs); AÂ Probabilistic Formalism for Higher-Order Cognition
A probabilistic graphical model, Neuronal Unit of Thoughts (NUTs), is proposed in this paper that offers a formalism for the integration of lower-level cognitions. Nodes or neurons in NUTs represent sensory data or mental concepts or actions, and edges the causal relation between them. A node affec...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Published: |
Springer Science and Business Media Deutschland GmbH
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111964038&doi=10.1007%2f978-981-16-1089-9_66&partnerID=40&md5=3a0cb4771da002d950ef2819caf30f07 http://eprints.utp.edu.my/29472/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A probabilistic graphical model, Neuronal Unit of Thoughts (NUTs), is proposed in this paper that offers a formalism for the integration of lower-level cognitions. Nodes or neurons in NUTs represent sensory data or mental concepts or actions, and edges the causal relation between them. A node affects a change in the Action Potential (AP) of its child node, triggering a value change once the AP reaches a fuzzy threshold. Multiple NUTs may be crossed together producing a novel NUTs. The transition time in a NUTs, in response to a �surprise,� is characterized, and the formalism is evaluated in the context of a non-trivial application: Autonomous Driving with imperfect sensors. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. |
---|