Adsorption and Artificial Neural Network Modelling of Metolachlor Removal by MIL-53(Al) Metal-Organic Framework
Saved in:
Main Authors: | Isiyaka, H.A., Ramli, A., Jumbri, K., Sambudi, N.S., Zango, Z.U., Saad, B. |
---|---|
Format: | Article |
Published: |
Springer Science and Business Media Deutschland GmbH
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104477231&doi=10.1007%2f978-3-030-70917-4_24&partnerID=40&md5=79eb87077fb4063588ce111d47d5b854 http://eprints.utp.edu.my/23991/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Effective adsorption of metolachlor herbicide by MIL-53(Al) metal-organic framework: Optimization, validation and molecular docking simulation studies
by: Ahmad Isiyaka, H., et al.
Published: (2022) -
Effective adsorption of metolachlor herbicide by MIL-53(Al) metal-organic framework: Optimization, validation and molecular docking simulation studies
by: Ahmad Isiyaka, H., et al.
Published: (2022) -
Effective adsorption of metolachlor herbicide by MIL-53(Al) metal-organic framework: Optimization, validation and molecular docking simulation studies
by: Ahmad Isiyaka, H., et al.
Published: (2022) -
Effective adsorption of metolachlor herbicide by MIL-53(Al) metal-organic framework: Optimization, validation and molecular docking simulation studies
by: Ahmad Isiyaka, H., et al.
Published: (2022) -
Optimizations and docking simulation study for metolachlor adsorption from water onto MIL-101(Cr) metal�organic framework
by: Isiyaka, H.A., et al.
Published: (2022)