Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing
The paper explores the possibility of using high-resolution fiber Bragg grating (FBG) sensing technology for on-specimen strain measurement in the laboratory. The approach provides a means to assess the surface deformation of the specimen, both the axial and radial, through a chain of FBG sensor (C-...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Published: |
MDPI AG
2021
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104508785&doi=10.3390%2fs21092926&partnerID=40&md5=889bfede60b090c4a844110ec0baa55f http://eprints.utp.edu.my/23785/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.23785 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.237852021-08-19T13:10:03Z Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing Isah, B.W. Mohamad, H. The paper explores the possibility of using high-resolution fiber Bragg grating (FBG) sensing technology for on-specimen strain measurement in the laboratory. The approach provides a means to assess the surface deformation of the specimen, both the axial and radial, through a chain of FBG sensor (C-FBG), in a basic setup of a uniaxial compression test. The method is cost-effective, straightforward and can be commercialized. Two C-FBG; one was applied directly to the sample (FBGBare ), and the other was packaged (FBGPack) for ease of application. The approach measures the local strain with high-resolution and accuracy levels that match up to the existing local strain measuring sensors. The approach enables the evaluation of small-strain properties of the specimen intelligently. The finite element model analysis deployed has proven the adaptability of the technique for measuring material deformation. The adhesive thickness and packaging technique have been shown to influence the sensitivity of the FBG sensors. Owing to the relative ease and low-cost of instrumentation, the suggested method has a great potential to be routinely applied for elemental testing in the laboratory. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. MDPI AG 2021 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104508785&doi=10.3390%2fs21092926&partnerID=40&md5=889bfede60b090c4a844110ec0baa55f Isah, B.W. and Mohamad, H. (2021) Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing. Sensors, 21 (9). http://eprints.utp.edu.my/23785/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
The paper explores the possibility of using high-resolution fiber Bragg grating (FBG) sensing technology for on-specimen strain measurement in the laboratory. The approach provides a means to assess the surface deformation of the specimen, both the axial and radial, through a chain of FBG sensor (C-FBG), in a basic setup of a uniaxial compression test. The method is cost-effective, straightforward and can be commercialized. Two C-FBG; one was applied directly to the sample (FBGBare ), and the other was packaged (FBGPack) for ease of application. The approach measures the local strain with high-resolution and accuracy levels that match up to the existing local strain measuring sensors. The approach enables the evaluation of small-strain properties of the specimen intelligently. The finite element model analysis deployed has proven the adaptability of the technique for measuring material deformation. The adhesive thickness and packaging technique have been shown to influence the sensitivity of the FBG sensors. Owing to the relative ease and low-cost of instrumentation, the suggested method has a great potential to be routinely applied for elemental testing in the laboratory. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
format |
Article |
author |
Isah, B.W. Mohamad, H. |
spellingShingle |
Isah, B.W. Mohamad, H. Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing |
author_facet |
Isah, B.W. Mohamad, H. |
author_sort |
Isah, B.W. |
title |
Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing |
title_short |
Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing |
title_full |
Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing |
title_fullStr |
Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing |
title_full_unstemmed |
Surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing |
title_sort |
surface-mounted bare and packaged fiber bragg grating sensors for measuring rock strain in uniaxial testing |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104508785&doi=10.3390%2fs21092926&partnerID=40&md5=889bfede60b090c4a844110ec0baa55f http://eprints.utp.edu.my/23785/ |
_version_ |
1738656521393274880 |
score |
13.211869 |