An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel

Number of existing signal processing methods can be used for extracting useful information. However, receiving desired and eliminating undesired information is yet a significant problem of these methods. Empirical Mode Decomposition (EMD) algorithm shows promising results in comparison to other sign...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd Jaafar, N.S., Aziz, I.A., Jaafar, J., Mahmood, A.K., Gilal, A.R.
Format: Article
Published: 2019
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047859630&doi=10.1007%2f978-3-319-91189-2_24&partnerID=40&md5=a16ae21db8a5efb5e6a131d50c009adf
http://eprints.utp.edu.my/22249/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.22249
record_format eprints
spelling my.utp.eprints.222492019-03-26T00:50:27Z An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel Mohd Jaafar, N.S. Aziz, I.A. Jaafar, J. Mahmood, A.K. Gilal, A.R. Number of existing signal processing methods can be used for extracting useful information. However, receiving desired and eliminating undesired information is yet a significant problem of these methods. Empirical Mode Decomposition (EMD) algorithm shows promising results in comparison to other signal processing methods especially in terms of accuracy. For example, it shows an efficient relationship between signal energy and time frequency distribution. Though, EMD algorithm still has a noise contamination which may compromise the accuracy of the signal processing. It is due to the mode mixing phenomenon in the Intrinsic Mode Function�s (IMF) which causes the undesirable signal with the mix of additional noise. Therefore, it has still a room for the improvements in the selective accuracy of the sensitive IMF after decomposition that can influence the correctness of feature extraction of the oxidized carbon steel. This study has used two datasets to compare the parameters analysis of the Ensemble Empirical Mode Decomposition (EEMD) algorithm for constructing the signal signature. © 2019, Springer International Publishing AG, part of Springer Nature. 2019 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047859630&doi=10.1007%2f978-3-319-91189-2_24&partnerID=40&md5=a16ae21db8a5efb5e6a131d50c009adf Mohd Jaafar, N.S. and Aziz, I.A. and Jaafar, J. and Mahmood, A.K. and Gilal, A.R. (2019) An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel. Advances in Intelligent Systems and Computing, 764 . pp. 241-255. http://eprints.utp.edu.my/22249/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Number of existing signal processing methods can be used for extracting useful information. However, receiving desired and eliminating undesired information is yet a significant problem of these methods. Empirical Mode Decomposition (EMD) algorithm shows promising results in comparison to other signal processing methods especially in terms of accuracy. For example, it shows an efficient relationship between signal energy and time frequency distribution. Though, EMD algorithm still has a noise contamination which may compromise the accuracy of the signal processing. It is due to the mode mixing phenomenon in the Intrinsic Mode Function�s (IMF) which causes the undesirable signal with the mix of additional noise. Therefore, it has still a room for the improvements in the selective accuracy of the sensitive IMF after decomposition that can influence the correctness of feature extraction of the oxidized carbon steel. This study has used two datasets to compare the parameters analysis of the Ensemble Empirical Mode Decomposition (EEMD) algorithm for constructing the signal signature. © 2019, Springer International Publishing AG, part of Springer Nature.
format Article
author Mohd Jaafar, N.S.
Aziz, I.A.
Jaafar, J.
Mahmood, A.K.
Gilal, A.R.
spellingShingle Mohd Jaafar, N.S.
Aziz, I.A.
Jaafar, J.
Mahmood, A.K.
Gilal, A.R.
An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel
author_facet Mohd Jaafar, N.S.
Aziz, I.A.
Jaafar, J.
Mahmood, A.K.
Gilal, A.R.
author_sort Mohd Jaafar, N.S.
title An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel
title_short An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel
title_full An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel
title_fullStr An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel
title_full_unstemmed An enhance approach of filtering to select adaptive IMFs of EEMD in fiber optic sensor for oxidized carbon steel
title_sort enhance approach of filtering to select adaptive imfs of eemd in fiber optic sensor for oxidized carbon steel
publishDate 2019
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047859630&doi=10.1007%2f978-3-319-91189-2_24&partnerID=40&md5=a16ae21db8a5efb5e6a131d50c009adf
http://eprints.utp.edu.my/22249/
_version_ 1738656399075835904
score 13.223943