A new fluid factor and its application using a deep learning approach
Amplitude interpretation for hydrocarbon prediction is an important task in the oil and gas industry. Seismic amplitude is dominated by porosity, the volume of clay, pore-filled fluid type and lithology. A few seismic attributes are proposed to predict the existence of hydrocarbon. This paper propos...
保存先:
主要な著者: | Liu, C., Ghosh, D.P., Salim, A.M.A., Chow, W.S. |
---|---|
フォーマット: | 論文 |
出版事項: |
2019
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057314987&doi=10.1111%2f1365-2478.12712&partnerID=40&md5=cf9e3d951f0bf61da34fb1b4d3734172 http://eprints.utp.edu.my/22222/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Advanced fluid indicator based on numerical simulation and deep learning
著者:: Liu, C., 等
出版事項: (2020) -
Sub-surface investigation in the frontier region of deep-water NW Sabah, Malaysia
著者:: Banerjee, A., 等
出版事項: (2019) -
Machine-learning guided fracture density seismic inversion: A new approach in fractured basement characterisation
著者:: Shamsuddin, A.A.S., 等
出版事項: (2020) -
New fluid and lithology indicator from seismic and rock physics: Malaysian offshore case study
著者:: Hermana, M., 等
出版事項: (2016) -
A new approach to petroelastic modeling of carbonate rocks using an extended pore-space stiffness method, with application to a carbonate reservoir in Central Luconia, Sarawak, Malaysia
著者:: Babasafari, A.A., 等
出版事項: (2020)