The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes
In this study, natural sawdust fillers from acacia were mixed with unsaturated polyester resin (UPR), which was prepared by recycling of polyethylene terephthalate (PET) waste bottles to prepare sawdust/UPR composite. PET wastes were recycled through glycolysis and depolymerized to produce a formula...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Citation Index Journal |
Published: |
2008
|
Subjects: | |
Online Access: | http://eprints.utp.edu.my/221/1/paper.pdf http://www.scopus.com/inward/record.url?eid=2-s2.0-55849146636&partnerID=40&md5=e11ca392e653d3fbbc7fed7e4d794d0b http://eprints.utp.edu.my/221/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.221 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.2212017-01-19T08:26:21Z The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes A., Ramli I., Ahmad Z., Mosadeghzad R., Daik TP Chemical technology In this study, natural sawdust fillers from acacia were mixed with unsaturated polyester resin (UPR), which was prepared by recycling of polyethylene terephthalate (PET) waste bottles to prepare sawdust/UPR composite. PET wastes were recycled through glycolysis and depolymerized to produce a formulation for the resin. The effects of alkali treatment, filler content, and filler size on the tensile, flexural, hardness, and water absorption of the composites were investigated. The results show that the modulus of both tensile and flexural increased with increasing filler contents, but the tensile and flexural strength of composites decreased. The size of sawdust also played a significant role in the mechanical properties, with smaller size sawdust producing higher strength and modulus. This is due to the greater surface area for filler-matrix interaction. The results also show that alkali treatment causes a better adhesion between sawdust and UPR matrix and improves the mechanical properties of the composites. Furthermore, surface treatment reduced the water absorption of composites. © 2008 Wiley Periodicals, Inc. 2008 Citation Index Journal NonPeerReviewed application/pdf http://eprints.utp.edu.my/221/1/paper.pdf http://www.scopus.com/inward/record.url?eid=2-s2.0-55849146636&partnerID=40&md5=e11ca392e653d3fbbc7fed7e4d794d0b A., Ramli and I., Ahmad and Z., Mosadeghzad and R., Daik (2008) The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes. [Citation Index Journal] http://eprints.utp.edu.my/221/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology A., Ramli I., Ahmad Z., Mosadeghzad R., Daik The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes |
description |
In this study, natural sawdust fillers from acacia were mixed with unsaturated polyester resin (UPR), which was prepared by recycling of polyethylene terephthalate (PET) waste bottles to prepare sawdust/UPR composite. PET wastes were recycled through glycolysis and depolymerized to produce a formulation for the resin. The effects of alkali treatment, filler content, and filler size on the tensile, flexural, hardness, and water absorption of the composites were investigated. The results show that the modulus of both tensile and flexural increased with increasing filler contents, but the tensile and flexural strength of composites decreased. The size of sawdust also played a significant role in the mechanical properties, with smaller size sawdust producing higher strength and modulus. This is due to the greater surface area for filler-matrix interaction. The results also show that alkali treatment causes a better adhesion between sawdust and UPR matrix and improves the mechanical properties of the composites. Furthermore, surface treatment reduced the water absorption of composites. © 2008 Wiley Periodicals, Inc.
|
format |
Citation Index Journal |
author |
A., Ramli I., Ahmad Z., Mosadeghzad R., Daik |
author_facet |
A., Ramli I., Ahmad Z., Mosadeghzad R., Daik |
author_sort |
A., Ramli |
title |
The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes
|
title_short |
The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes
|
title_full |
The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes
|
title_fullStr |
The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes
|
title_full_unstemmed |
The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes
|
title_sort |
effect of alkali treatment and filler size on the properties of sawdust/upr composites based on recycled pet wastes |
publishDate |
2008 |
url |
http://eprints.utp.edu.my/221/1/paper.pdf http://www.scopus.com/inward/record.url?eid=2-s2.0-55849146636&partnerID=40&md5=e11ca392e653d3fbbc7fed7e4d794d0b http://eprints.utp.edu.my/221/ |
_version_ |
1738655041460371456 |
score |
13.211869 |