Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels
In water flooding process, volumetric sweep efficiency and oil recovery can be enhanced using polymer to increase the viscosity of water. As a result, polymer flooding has higher recovery as compared to water flooding due to front stability and reduction of fingering problem. In this research work,...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Published: |
Springer Verlag
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047904794&doi=10.1007%2fs13202-018-0492-x&partnerID=40&md5=18b12466813c8a8348bb3adebdde79c0 http://eprints.utp.edu.my/20868/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.20868 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.208682019-02-26T02:34:18Z Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels Hosseini, S.J. Foroozesh, J. In water flooding process, volumetric sweep efficiency and oil recovery can be enhanced using polymer to increase the viscosity of water. As a result, polymer flooding has higher recovery as compared to water flooding due to front stability and reduction of fingering problem. In this research work, a set of polymer flooding runs were carried out using glass-type micromodels. The micromodels were fabricated to have homogeneous and heterogeneous flow patterns. They were positioned horizontally and saturated with a heavy crude oil sample taken from an Iranian oil field before starting the injection. Three commercial polymers were used in this study. Whole process was photographed continuously with a high-resolution camera to monitor the displacement of polymer solution in the micromodels. As a part of this study, the effect of different parameters including polymer solution concentration, injection flow rate and heterogeneity on performance of polymer flooding was investigated. On top of the regular homogeneous and heterogeneous flow patterns used in this study, a heterogeneous flow pattern mimicking sandstone reservoirs was created based on the image of a thin section of a sandstone (outcrop) and polymer front movement was observed during injection. © 2018 The Author(s) Springer Verlag 2018 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047904794&doi=10.1007%2fs13202-018-0492-x&partnerID=40&md5=18b12466813c8a8348bb3adebdde79c0 Hosseini, S.J. and Foroozesh, J. (2018) Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels. Journal of Petroleum Exploration and Production Technology . pp. 1-11. http://eprints.utp.edu.my/20868/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
In water flooding process, volumetric sweep efficiency and oil recovery can be enhanced using polymer to increase the viscosity of water. As a result, polymer flooding has higher recovery as compared to water flooding due to front stability and reduction of fingering problem. In this research work, a set of polymer flooding runs were carried out using glass-type micromodels. The micromodels were fabricated to have homogeneous and heterogeneous flow patterns. They were positioned horizontally and saturated with a heavy crude oil sample taken from an Iranian oil field before starting the injection. Three commercial polymers were used in this study. Whole process was photographed continuously with a high-resolution camera to monitor the displacement of polymer solution in the micromodels. As a part of this study, the effect of different parameters including polymer solution concentration, injection flow rate and heterogeneity on performance of polymer flooding was investigated. On top of the regular homogeneous and heterogeneous flow patterns used in this study, a heterogeneous flow pattern mimicking sandstone reservoirs was created based on the image of a thin section of a sandstone (outcrop) and polymer front movement was observed during injection. © 2018 The Author(s) |
format |
Article |
author |
Hosseini, S.J. Foroozesh, J. |
spellingShingle |
Hosseini, S.J. Foroozesh, J. Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels |
author_facet |
Hosseini, S.J. Foroozesh, J. |
author_sort |
Hosseini, S.J. |
title |
Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels |
title_short |
Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels |
title_full |
Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels |
title_fullStr |
Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels |
title_full_unstemmed |
Experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels |
title_sort |
experimental study of polymer injection enhanced oil recovery in homogeneous and heterogeneous porous media using glass-type micromodels |
publisher |
Springer Verlag |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047904794&doi=10.1007%2fs13202-018-0492-x&partnerID=40&md5=18b12466813c8a8348bb3adebdde79c0 http://eprints.utp.edu.my/20868/ |
_version_ |
1738656244027097088 |
score |
13.211869 |