Discrete-time H∞ control of a class of underactuated electromechanical systems
This paper focuses on the design and performance of sampled-data robust control of a class of continuous-time underactuated electromechanical systems. The control law is designed on the philosophy based on stabilization of discrete-time equivalent model of a continuous-time system which can be broad...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85012033980&doi=10.1109%2fICIAS.2016.7824111&partnerID=40&md5=192e4181d503d00920274a0a99945ef7 http://eprints.utp.edu.my/20194/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper focuses on the design and performance of sampled-data robust control of a class of continuous-time underactuated electromechanical systems. The control law is designed on the philosophy based on stabilization of discrete-time equivalent model of a continuous-time system which can be broadly classified into sampled-data stabilization of a class of underactuated linear systems with a time-varying actuation characteristics. The system can be actuated by a short duration pulse in a fixed interval of time. The system is discretized for complete actuation cycle to get an equivalent discrete-time model of the continuous-time system. The equivalent model is developed by considering a complete actuation cycle as a single discrete step. The continuous-time system is fully actuated in this interval and unactuated otherwise. The state feedback control law is designed on the basis of fully actuated, time invariant exact discrete-time equivalent model of the continuous-time system. The simulations show that proposed controller achieved the desired orientation control. © 2016 IEEE. |
---|