Facial geometry and speech analysis for depression detection

Depression is one of the most prevalent mental disorders, burdening many people world-wide. A system with the potential of serving as a decision support system is proposed, based on novel features extracted from facial expression geometry and speech, by interpreting non-verbal manifestations of depr...

Full description

Saved in:
Bibliographic Details
Main Authors: Pampouchidou, A., Simantiraki, O., Vazakopoulou, C.-M., Chatzaki, C., Pediaditis, M., Maridaki, A., Marias, K., Simos, P., Yang, F., Meriaudeau, F., Tsiknakis, M.
Format: Article
Published: Institute of Electrical and Electronics Engineers Inc. 2017
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029121274&doi=10.1109%2fEMBC.2017.8037103&partnerID=40&md5=a8c5cb70311a24f926e4bfcda31410d1
http://eprints.utp.edu.my/20022/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Depression is one of the most prevalent mental disorders, burdening many people world-wide. A system with the potential of serving as a decision support system is proposed, based on novel features extracted from facial expression geometry and speech, by interpreting non-verbal manifestations of depression. The proposed system has been tested both in gender independent and gender based modes, and with different fusion methods. The algorithms were evaluated for several combinations of parameters and classification schemes, on the dataset provided by the Audio/Visual Emotion Challenge of 2013 and 2014. The proposed framework achieved a precision of 94.8 for detecting persons achieving high scores on a self-report scale of depressive symptomatology. Optimal system performance was obtained using a nearest neighbour classifier on the decision fusion of geometrical features in the gender independent mode, and audio based features in the gender based mode; single visual and audio decisions were combined with the OR binary operation. © 2017 IEEE.