Hybrid Intelligent Warning System for Boiler tube Leak Trips
Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
EDP Sciences
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033236736&doi=10.1051%2fmatecconf%2f201713103003&partnerID=40&md5=5cebc8c54645a36146bb4f74b3acc9da http://eprints.utp.edu.my/19971/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.19971 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.199712018-04-22T14:29:11Z Hybrid Intelligent Warning System for Boiler tube Leak Trips Singh, D. Ismail, F.B. Shakir Nasif, M. Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1) represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2) represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM) methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA) was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers. © The authors, published by EDP Sciences, 2017. EDP Sciences 2017 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033236736&doi=10.1051%2fmatecconf%2f201713103003&partnerID=40&md5=5cebc8c54645a36146bb4f74b3acc9da Singh, D. and Ismail, F.B. and Shakir Nasif, M. (2017) Hybrid Intelligent Warning System for Boiler tube Leak Trips. MATEC Web of Conferences, 131 . http://eprints.utp.edu.my/19971/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1) represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2) represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM) methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA) was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers. © The authors, published by EDP Sciences, 2017. |
format |
Article |
author |
Singh, D. Ismail, F.B. Shakir Nasif, M. |
spellingShingle |
Singh, D. Ismail, F.B. Shakir Nasif, M. Hybrid Intelligent Warning System for Boiler tube Leak Trips |
author_facet |
Singh, D. Ismail, F.B. Shakir Nasif, M. |
author_sort |
Singh, D. |
title |
Hybrid Intelligent Warning System for Boiler tube Leak Trips |
title_short |
Hybrid Intelligent Warning System for Boiler tube Leak Trips |
title_full |
Hybrid Intelligent Warning System for Boiler tube Leak Trips |
title_fullStr |
Hybrid Intelligent Warning System for Boiler tube Leak Trips |
title_full_unstemmed |
Hybrid Intelligent Warning System for Boiler tube Leak Trips |
title_sort |
hybrid intelligent warning system for boiler tube leak trips |
publisher |
EDP Sciences |
publishDate |
2017 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033236736&doi=10.1051%2fmatecconf%2f201713103003&partnerID=40&md5=5cebc8c54645a36146bb4f74b3acc9da http://eprints.utp.edu.my/19971/ |
_version_ |
1738656145382309888 |
score |
13.211869 |