A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors

Catalyst deactivation is one of the major concerns in industrial catalytic reactors. The capability to perform detailed analysis of the catalytic process and its deactivation phenomenon is therefore vital in maintaining high productivity and product quality. Analysis and prediction of the catalyst d...

Full description

Saved in:
Bibliographic Details
Main Authors: Azarpour, A., N.G. Borhani, T., R. Wan Alwi, S., A. Manan, Z., I. Abdul Mutalib, M.
Format: Article
Published: Institution of Chemical Engineers 2017
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994056570&doi=10.1016%2fj.cherd.2016.10.024&partnerID=40&md5=3578f3fb2edd3a1f6753f6064b1499c3
http://eprints.utp.edu.my/19837/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utp.eprints.19837
record_format eprints
spelling my.utp.eprints.198372018-04-22T13:07:09Z A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors Azarpour, A. N.G. Borhani, T. R. Wan Alwi, S. A. Manan, Z. I. Abdul Mutalib, M. Catalyst deactivation is one of the major concerns in industrial catalytic reactors. The capability to perform detailed analysis of the catalytic process and its deactivation phenomenon is therefore vital in maintaining high productivity and product quality. Analysis and prediction of the catalyst deactivation mechanism and the rate of deactivation are among the most challenging endeavors in the area of the catalytic reactor modeling. Hence, the catalyst deactivation phenomenon requires detailed dynamic modeling to enable its performance to be closely scrutinized. In this paper, a hybrid model incorporating first principle model and artificial neural network (ANN) has been used to develop a generic framework to model the industrial fixed-bed catalytic reactors (FBCRs) experiencing catalyst deactivation. The model does not consider the complicated mechanism of catalyst deactivation, and its effect is incorporated employing ANN, which utilizes the catalytic process data. The generic modeling steps have been extensively described, and the developed model has been applied on two industrial case studies. The validation of each model was carried out signifying that the generalized model developed has acceptable accuracy. The model enabled the lifetime of the industrial Pd/C and CuO-ZnO-Al2O3 catalysts and the effects of the operating parameters on the hydropurification process and methanol production reactors to be predicted. The generic strategy presented can be utilized for the performance analysis of any FBCR disregarding the type of catalyst. © 2016 Institution of Chemical Engineers Institution of Chemical Engineers 2017 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994056570&doi=10.1016%2fj.cherd.2016.10.024&partnerID=40&md5=3578f3fb2edd3a1f6753f6064b1499c3 Azarpour, A. and N.G. Borhani, T. and R. Wan Alwi, S. and A. Manan, Z. and I. Abdul Mutalib, M. (2017) A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors. Chemical Engineering Research and Design, 117 . pp. 149-167. http://eprints.utp.edu.my/19837/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Catalyst deactivation is one of the major concerns in industrial catalytic reactors. The capability to perform detailed analysis of the catalytic process and its deactivation phenomenon is therefore vital in maintaining high productivity and product quality. Analysis and prediction of the catalyst deactivation mechanism and the rate of deactivation are among the most challenging endeavors in the area of the catalytic reactor modeling. Hence, the catalyst deactivation phenomenon requires detailed dynamic modeling to enable its performance to be closely scrutinized. In this paper, a hybrid model incorporating first principle model and artificial neural network (ANN) has been used to develop a generic framework to model the industrial fixed-bed catalytic reactors (FBCRs) experiencing catalyst deactivation. The model does not consider the complicated mechanism of catalyst deactivation, and its effect is incorporated employing ANN, which utilizes the catalytic process data. The generic modeling steps have been extensively described, and the developed model has been applied on two industrial case studies. The validation of each model was carried out signifying that the generalized model developed has acceptable accuracy. The model enabled the lifetime of the industrial Pd/C and CuO-ZnO-Al2O3 catalysts and the effects of the operating parameters on the hydropurification process and methanol production reactors to be predicted. The generic strategy presented can be utilized for the performance analysis of any FBCR disregarding the type of catalyst. © 2016 Institution of Chemical Engineers
format Article
author Azarpour, A.
N.G. Borhani, T.
R. Wan Alwi, S.
A. Manan, Z.
I. Abdul Mutalib, M.
spellingShingle Azarpour, A.
N.G. Borhani, T.
R. Wan Alwi, S.
A. Manan, Z.
I. Abdul Mutalib, M.
A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors
author_facet Azarpour, A.
N.G. Borhani, T.
R. Wan Alwi, S.
A. Manan, Z.
I. Abdul Mutalib, M.
author_sort Azarpour, A.
title A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors
title_short A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors
title_full A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors
title_fullStr A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors
title_full_unstemmed A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors
title_sort generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors
publisher Institution of Chemical Engineers
publishDate 2017
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994056570&doi=10.1016%2fj.cherd.2016.10.024&partnerID=40&md5=3578f3fb2edd3a1f6753f6064b1499c3
http://eprints.utp.edu.my/19837/
_version_ 1738656126338072576
score 13.211869