A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models
Electrical energy demand forecasting plays a pivotal role as a decision support tool in the modern power industry. The focus of the paper is to propose a hybrid approach for the selection of the most influential input variables for the training and testing of neural network based hybrid models. The...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Published: |
UK Simulation Society
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017241870&doi=10.5013%2fIJSSST.a.17.41.04&partnerID=40&md5=f2b4655edc51bd0191ea547eb4e4565e http://eprints.utp.edu.my/19700/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utp.eprints.19700 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.197002018-04-20T07:32:30Z A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models ul Islam, B. Baharudin, Z. Electrical energy demand forecasting plays a pivotal role as a decision support tool in the modern power industry. The focus of the paper is to propose a hybrid approach for the selection of the most influential input variables for the training and testing of neural network based hybrid models. The combined influence of the genetic algorithm and correlation analysis are used in this technique. The significance of the selected input variable vectors is studied to analyze their effects on the prediction process. Another objective of the study is to develop and compare the prediction models for electrical energy demand of one day-ahead. These models are developed by integrating multilayer perceptron neural network and evolutionary optimization techniques. Genetic algorithm and simulated annealing techniques are used to optimize the control parameters of the neural network. The results show that the neural network optimized with genetic algorithm and trained with an optimally and intelligently selected input vector containing historical load and meteorological variables produced the best prediction accuracy. Keywords - artificial neural network; mean absolute percentage error; genetic algorithm; simulated annealing; correlation analysisAbstract — Electrical energy demand forecasting plays a pivotal role as a decision support tool in the modern power industry. The focus of the paper is to propose a hybrid approach for the selection of the most influential input variables for the training and testing of neural network based hybrid models. The combined influence of the genetic algorithm and correlation analysis are used in this technique. The significance of the selected input variable vectors is studied to analyze their effects on the prediction process. Another objective of the study is to develop and compare the prediction models for electrical energy demand of one day-ahead. These models are developed by integrating multilayer perceptron neural network and evolutionary optimization techniques. Genetic algorithm and simulated annealing techniques are used to optimize the control parameters of the neural network. The results show that the neural network optimized with genetic algorithm and trained with an optimally and intelligently selected input vector containing historical load and meteorological variables produced the best prediction accuracy. © 2017, UK Simulation Society. All rights reserved. UK Simulation Society 2017 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017241870&doi=10.5013%2fIJSSST.a.17.41.04&partnerID=40&md5=f2b4655edc51bd0191ea547eb4e4565e ul Islam, B. and Baharudin, Z. (2017) A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models. International Journal of Simulation: Systems, Science and Technology, 17 (41). 4.1-4.5. http://eprints.utp.edu.my/19700/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
Electrical energy demand forecasting plays a pivotal role as a decision support tool in the modern power industry. The focus of the paper is to propose a hybrid approach for the selection of the most influential input variables for the training and testing of neural network based hybrid models. The combined influence of the genetic algorithm and correlation analysis are used in this technique. The significance of the selected input variable vectors is studied to analyze their effects on the prediction process. Another objective of the study is to develop and compare the prediction models for electrical energy demand of one day-ahead. These models are developed by integrating multilayer perceptron neural network and evolutionary optimization techniques. Genetic algorithm and simulated annealing techniques are used to optimize the control parameters of the neural network. The results show that the neural network optimized with genetic algorithm and trained with an optimally and intelligently selected input vector containing historical load and meteorological variables produced the best prediction accuracy. Keywords - artificial neural network; mean absolute percentage error; genetic algorithm; simulated annealing; correlation analysisAbstract — Electrical energy demand forecasting plays a pivotal role as a decision support tool in the modern power industry. The focus of the paper is to propose a hybrid approach for the selection of the most influential input variables for the training and testing of neural network based hybrid models. The combined influence of the genetic algorithm and correlation analysis are used in this technique. The significance of the selected input variable vectors is studied to analyze their effects on the prediction process. Another objective of the study is to develop and compare the prediction models for electrical energy demand of one day-ahead. These models are developed by integrating multilayer perceptron neural network and evolutionary optimization techniques. Genetic algorithm and simulated annealing techniques are used to optimize the control parameters of the neural network. The results show that the neural network optimized with genetic algorithm and trained with an optimally and intelligently selected input vector containing historical load and meteorological variables produced the best prediction accuracy. © 2017, UK Simulation Society. All rights reserved. |
format |
Article |
author |
ul Islam, B. Baharudin, Z. |
spellingShingle |
ul Islam, B. Baharudin, Z. A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models |
author_facet |
ul Islam, B. Baharudin, Z. |
author_sort |
ul Islam, B. |
title |
A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models |
title_short |
A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models |
title_full |
A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models |
title_fullStr |
A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models |
title_full_unstemmed |
A meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models |
title_sort |
meta-heuristics based input variable selection technique for hybrid electrical energy demand prediction models |
publisher |
UK Simulation Society |
publishDate |
2017 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017241870&doi=10.5013%2fIJSSST.a.17.41.04&partnerID=40&md5=f2b4655edc51bd0191ea547eb4e4565e http://eprints.utp.edu.my/19700/ |
_version_ |
1738656107196317696 |
score |
13.223943 |