Shear Failure of RC Dapped-End Beams

Reinforced concrete dapped-end beams (RC-DEBs) are mainly used for precast element construction. RC-DEBs generally are recessed at their end parts and supported by columns, cantilevers, inverted T-beams, or corbels. The geometric discontinuity of dapped-end beams evokes a severe stress concentration...

詳細記述

保存先:
書誌詳細
第一著者: , Muhammad Aswin, Bashar S Mohammed, Mohammad Shahir Liew, Zubair
フォーマット: 論文
出版事項: 2015
主題:
オンライン・アクセス:http://eprints.utp.edu.my/12089/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Reinforced concrete dapped-end beams (RC-DEBs) are mainly used for precast element construction. RC-DEBs generally are recessed at their end parts and supported by columns, cantilevers, inverted T-beams, or corbels. The geometric discontinuity of dapped-end beams evokes a severe stress concentration at reentrant corners that may lead to shear failure. Therefore, stress analysis is required at the reentrant vicinity for design requirement of these beams. Four large-scale RC-DEBs specimens were prepared, cast, and tested up to failure. Three parameters were investigated: amount of nib reinforcements, main flexural reinforcements, and concrete type at the dapped-end area. Finite element analysis using Vec2 was also conducted to predict the behavior of RC-DEBs. It has been found that highest stresses concentration factors occur at the reentrant corners and its vicinity. By using engineered cementitious composite (ECC) in the dapped-end area, the failure load has increased by 51.9%, while the increment in the failure load was 62.2% and 46.7% as the amount of nib reinforcement and main flexural reinforcement increased, respectively. In addition, Vec2 analysis has been found to provide better accuracy for predicting the failure load of RC-DEBs compared to other analysis approaches.