Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications
This study investigated the performance of a Mosaic Frequency Selective Surface (MFSS) structure for two different applications: optical transparency and absorber. The MFSS for optical transparency application is comprised of a polycarbonate substrate with permittivity, varepsilon_{r} of 2.9, and th...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/98829/ http://dx.doi.org/10.23919/EuCAP53622.2022.9769471 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.98829 |
---|---|
record_format |
eprints |
spelling |
my.utm.988292023-03-05T06:44:06Z http://eprints.utm.my/id/eprint/98829/ Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications Mohamed Nafis, Nur Biha Himdi, Mohamed A. Rahim, Mohamad Kamal Merzaki, Faissal TK Electrical engineering. Electronics Nuclear engineering This study investigated the performance of a Mosaic Frequency Selective Surface (MFSS) structure for two different applications: optical transparency and absorber. The MFSS for optical transparency application is comprised of a polycarbonate substrate with permittivity, varepsilon_{r} of 2.9, and the MFSS for absorber application utilized a Polyethylene Terephthalate (PET) substrate with varepsilon_{r} of 2.7. The MFSS unit cell is composed of a conductive metallic element design that integrates the Koch fractal and the double hexagonal loop for the optical transparency application. Meanwhile, the resistive MFSS unit cell with sheet resistivity of 100 Omega/text{sq} is utilized for the absorber application. A Computer Simulation Technology (CST) Microwave Studio software is employed to carry out the calculation and frequency response analysis for both applications. Based on the results, it was concluded that the transparent MFSS yielded a wideband stopband and passband responses (fractional bandwidth (text{FBW}) > 50%) with a low cross-polarization (-37 dB), and a wideband absorptivity response was achieved with thin MFSS absorber. In addition, the simulated and measured responses of the transparent MFSS achieved well-fitted correlations. The findings indicated that the proposed MFSS unit cell able to provide wideband response for both applications. 2022 Conference or Workshop Item PeerReviewed Mohamed Nafis, Nur Biha and Himdi, Mohamed and A. Rahim, Mohamad Kamal and Merzaki, Faissal (2022) Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications. In: 16th European Conference on Antennas and Propagation, EuCAP 2022, 27 March 2022 - 1 April 2022, Madrid, Spain. http://dx.doi.org/10.23919/EuCAP53622.2022.9769471 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Mohamed Nafis, Nur Biha Himdi, Mohamed A. Rahim, Mohamad Kamal Merzaki, Faissal Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications |
description |
This study investigated the performance of a Mosaic Frequency Selective Surface (MFSS) structure for two different applications: optical transparency and absorber. The MFSS for optical transparency application is comprised of a polycarbonate substrate with permittivity, varepsilon_{r} of 2.9, and the MFSS for absorber application utilized a Polyethylene Terephthalate (PET) substrate with varepsilon_{r} of 2.7. The MFSS unit cell is composed of a conductive metallic element design that integrates the Koch fractal and the double hexagonal loop for the optical transparency application. Meanwhile, the resistive MFSS unit cell with sheet resistivity of 100 Omega/text{sq} is utilized for the absorber application. A Computer Simulation Technology (CST) Microwave Studio software is employed to carry out the calculation and frequency response analysis for both applications. Based on the results, it was concluded that the transparent MFSS yielded a wideband stopband and passband responses (fractional bandwidth (text{FBW}) > 50%) with a low cross-polarization (-37 dB), and a wideband absorptivity response was achieved with thin MFSS absorber. In addition, the simulated and measured responses of the transparent MFSS achieved well-fitted correlations. The findings indicated that the proposed MFSS unit cell able to provide wideband response for both applications. |
format |
Conference or Workshop Item |
author |
Mohamed Nafis, Nur Biha Himdi, Mohamed A. Rahim, Mohamad Kamal Merzaki, Faissal |
author_facet |
Mohamed Nafis, Nur Biha Himdi, Mohamed A. Rahim, Mohamad Kamal Merzaki, Faissal |
author_sort |
Mohamed Nafis, Nur Biha |
title |
Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications |
title_short |
Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications |
title_full |
Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications |
title_fullStr |
Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications |
title_full_unstemmed |
Mosaic frequency selective surface with wideband response for the optically transparent and absorber applications |
title_sort |
mosaic frequency selective surface with wideband response for the optically transparent and absorber applications |
publishDate |
2022 |
url |
http://eprints.utm.my/id/eprint/98829/ http://dx.doi.org/10.23919/EuCAP53622.2022.9769471 |
_version_ |
1759689414342082560 |
score |
13.211869 |