Experimental and modelling of alkali-activated mortar compressive strength using hybrid support vector regression and genetic algorithm

This paper presents the outcome of work conducted to develop models for the prediction of compressive strength (CS) of alkali-activated limestone powder and natural pozzolan mortar (AALNM) using hybrid genetic algorithm (GA) and support vector regression (SVR) algorithm, for the first time. The deve...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Sodani, Khaled A. Alawi, Adewumi, Adeshina Adewale, Mohd. Ariffin, Mohd. Azreen, Maslehuddin, Mohammed, Mohammad Ismail, Mohammad Ismail, Salami, Hamza Onoruoiza, Owolabi, Taoreed O., Mohamed, Hatim Dafalla
Format: Article
Language:English
Published: MDPI AG 2021
Subjects:
Online Access:http://eprints.utm.my/id/eprint/97526/1/MohdAzreen2021_ExperimentalandModellingofAlkaliActivatedMortar.pdf
http://eprints.utm.my/id/eprint/97526/
http://dx.doi.org/10.3390/ma14113049
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the outcome of work conducted to develop models for the prediction of compressive strength (CS) of alkali-activated limestone powder and natural pozzolan mortar (AALNM) using hybrid genetic algorithm (GA) and support vector regression (SVR) algorithm, for the first time. The developed hybrid GA-SVR-CS1, GA-SVR-CS3, and GA-SVR-CS14 models are capable of estimating the one-day, three-day, and 14-day compressive strength, respectively, of AALNM up to 96.64%, 90.84%, and 93.40% degree of accuracy as measured on the basis of correlation coefficient between the measured and estimated values for a set of data that is excluded from training and testing phase of the model development. The developed hybrid GA-SVR-CS28E model estimates the 28-days compressive strength of AALNM using the 14-days strength, it performs better than hybrid GA-SVR-CS28C model, hybrid GA-SVR-CS28B model, hybrid GA-SVR-CS28A model, and hybrid GA-SVR-CS28D model that respectively estimates the 28-day compressive strength using three-day strength, one day-strength, all the descriptors and seven day-strength with performance improvement of 103.51%, 124.47%, 149.94%, and 262.08% on the basis of root mean square error. The outcome of this work will promote the use of environment-friendly concrete with excellent strength and provide effective as well as efficient ways of modeling the compressive strength of concrete.