Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities
Malignant melanoma is a lethal human skin cancer that is not easily treatable through traditional medicines, surgeries, and therapies. Millions of cases are recorded annually to cure physiological skin defects by chemotherapy that causes several adverse effects and challenges. Moreover, pathogenic i...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier B.V.
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/95809/ http://dx.doi.org/10.1016/j.arabjc.2021.103120 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.95809 |
---|---|
record_format |
eprints |
spelling |
my.utm.958092022-05-31T13:19:31Z http://eprints.utm.my/id/eprint/95809/ Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities Nazir, Samina Aslam Khan, Muhammad Umar Al-Arjan, Wafa Shamsan Abd. Razak, Saiful Izwan Javed, Aneela Abdul Kadir, Mohammed Rafiq QH301 Biology Malignant melanoma is a lethal human skin cancer that is not easily treatable through traditional medicines, surgeries, and therapies. Millions of cases are recorded annually to cure physiological skin defects by chemotherapy that causes several adverse effects and challenges. Moreover, pathogenic infections might aggravate infection with subsequent ulceration or cutaneous melanoma. Accordingly, we synthesized nanodrug by loading chemotherapeutic agent, Fluorouracil (5FU), onto the reduced graphene oxide (rGO). We then extracted arabinoxylan (ARX) from the husk of Plantago Ovata and functionalized it into carboxymethylarabinoxylan (CMARX) and loaded synthesized nanodrug. We have crosslinked CMARX/nanodrug with different amount of tetraethylorthosilicate (TEOS) to prepare nanocomposite hydrogel rGO-5FU-CMARX system for melanoma skin cancer care and treatment. These nanocomposite hydrogel systems rGO-5FU-CMARX have exhibited different physicochemical properties. These properties were analyzed through FTIR, SEM, water contact angle, swelling in different media (aqueous and PBS) and biodegradation in PBS media. The in-vitro activities, i.e., drug delivery via Franz diffusion, antibacterial against S. aureus and P. aeruginosa and the anticancer activities was performed against Uppsala 87 Malignant Glioma (U-87) cell lines. Moreover, rGO-5FU-CMARX nanocomposite hydrogels displayed different antimicrobial and anticancer activities based on different crosslinking. Hence, an inventive rGO-5FU-CMARX based nanocomposite hydrogel drug-delivery system was developed to treat malignant melanoma skin cancer after bacterial infections. Elsevier B.V. 2021 Article PeerReviewed Nazir, Samina and Aslam Khan, Muhammad Umar and Al-Arjan, Wafa Shamsan and Abd. Razak, Saiful Izwan and Javed, Aneela and Abdul Kadir, Mohammed Rafiq (2021) Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. Arabian Journal of Chemistry, 14 (5). p. 103120. ISSN 1878-5352 http://dx.doi.org/10.1016/j.arabjc.2021.103120 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
QH301 Biology |
spellingShingle |
QH301 Biology Nazir, Samina Aslam Khan, Muhammad Umar Al-Arjan, Wafa Shamsan Abd. Razak, Saiful Izwan Javed, Aneela Abdul Kadir, Mohammed Rafiq Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities |
description |
Malignant melanoma is a lethal human skin cancer that is not easily treatable through traditional medicines, surgeries, and therapies. Millions of cases are recorded annually to cure physiological skin defects by chemotherapy that causes several adverse effects and challenges. Moreover, pathogenic infections might aggravate infection with subsequent ulceration or cutaneous melanoma. Accordingly, we synthesized nanodrug by loading chemotherapeutic agent, Fluorouracil (5FU), onto the reduced graphene oxide (rGO). We then extracted arabinoxylan (ARX) from the husk of Plantago Ovata and functionalized it into carboxymethylarabinoxylan (CMARX) and loaded synthesized nanodrug. We have crosslinked CMARX/nanodrug with different amount of tetraethylorthosilicate (TEOS) to prepare nanocomposite hydrogel rGO-5FU-CMARX system for melanoma skin cancer care and treatment. These nanocomposite hydrogel systems rGO-5FU-CMARX have exhibited different physicochemical properties. These properties were analyzed through FTIR, SEM, water contact angle, swelling in different media (aqueous and PBS) and biodegradation in PBS media. The in-vitro activities, i.e., drug delivery via Franz diffusion, antibacterial against S. aureus and P. aeruginosa and the anticancer activities was performed against Uppsala 87 Malignant Glioma (U-87) cell lines. Moreover, rGO-5FU-CMARX nanocomposite hydrogels displayed different antimicrobial and anticancer activities based on different crosslinking. Hence, an inventive rGO-5FU-CMARX based nanocomposite hydrogel drug-delivery system was developed to treat malignant melanoma skin cancer after bacterial infections. |
format |
Article |
author |
Nazir, Samina Aslam Khan, Muhammad Umar Al-Arjan, Wafa Shamsan Abd. Razak, Saiful Izwan Javed, Aneela Abdul Kadir, Mohammed Rafiq |
author_facet |
Nazir, Samina Aslam Khan, Muhammad Umar Al-Arjan, Wafa Shamsan Abd. Razak, Saiful Izwan Javed, Aneela Abdul Kadir, Mohammed Rafiq |
author_sort |
Nazir, Samina |
title |
Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities |
title_short |
Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities |
title_full |
Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities |
title_fullStr |
Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities |
title_full_unstemmed |
Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities |
title_sort |
nanocomposite hydrogels for melanoma skin cancer care and treatment: in-vitro drug delivery, drug release kinetics and anti-cancer activities |
publisher |
Elsevier B.V. |
publishDate |
2021 |
url |
http://eprints.utm.my/id/eprint/95809/ http://dx.doi.org/10.1016/j.arabjc.2021.103120 |
_version_ |
1735386849928544256 |
score |
13.211869 |