Hybrid deep learning model using recurrent neural network and gated recurrent unit for heart disease prediction
his paper proposes a new hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) with the combination of multiple gated recurrent units (GRU), long short-term memory (LSTM) and Adam optimizer. This proposed model resulted in an outstanding accuracy of 98.6876% wh...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Institute of Advanced Engineering and Science
2021
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/95039/1/PritheegaMagalingam2021_HybridDeepLearningModelUsingRecurrent.pdf http://eprints.utm.my/id/eprint/95039/ http://dx.doi.org/10.11591/ijece.v11i6.pp5467-5476 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|