A comparative study of nature-inspired metaheuristic algorithms using a three-phase hybrid approach for gene selection and classification in high-dimensional cancer datasets
Identification of informative genes is essential for the disease and cancer studies. Metaheuristic algorithms have been widely used for this purpose. However, their performance on various high-dimensional datasets of genomic studies has not been fully addressed. This work was intended to perform a c...
保存先:
主要な著者: | Hameed, Shilan S., Hassan, Wan Haslina, Abdul Latiff, Liza, Muhammad, Fahmi F. |
---|---|
フォーマット: | 論文 |
出版事項: |
Springer Science and Business Media Deutschland GmbH
2021
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/94946/ http://dx.doi.org/10.1007/s00500-021-05726-0 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
HDG-select: A novel GUI based application for gene selection and classification in high dimensional datasets
著者:: Hameed, Shilan S., 等
出版事項: (2021) -
Gene selection and classification in autism gene expression data
著者:: Al-Jaf, Shilan Sameen Hameed
出版事項: (2017) -
Statistical and nature-inspired metaheuristics analysis on flexirubin production
著者:: Suhaimi, Siti Nurulasilah, 等
出版事項: (2018) -
Review of Nature Inspired Metaheuristic Algorithm Selection for Combinatorial t-way Testing
著者:: Muazu, A.A., 等
出版事項: (2022) -
An Enhanced Topologically Significant Directed Random Walk in Cancer Classification using Gene Expression Datasets
著者:: Choon, Sen Seah, 等
出版事項: (2017)