One-step fabrication of a highly dispersed palladium nanoparticle-decorated reduced graphene oxide electrocatalyst for methanol electro-oxidation in acidic media

Reduced graphene oxide (RGO) was successfully decorated with homogeneous highly dispersed palladium nanoparticles (PdNPs) by a novel single-step hydrothermal-assisted formic acid reduction reaction without the use of any surfactants. The structure, surface morphology, and elemental composition of th...

Full description

Saved in:
Bibliographic Details
Main Authors: Hanifah, Mohamad Fahrul Radzi, Jaafar, Juhana, Othman, Mohd. Hafiz Dzarfan, Yusof, Norhaniza, A. Rahman, Mukhlis, Wan Salleh, Wan Norharyati, Ismail, Ahmad Fauzi, Aziz, Farhana, Rehman, Ghani Ur
Format: Article
Published: Elsevier Ltd 2021
Subjects:
Online Access:http://eprints.utm.my/id/eprint/94602/
http://dx.doi.org/10.1016/j.jpcs.2020.109718
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reduced graphene oxide (RGO) was successfully decorated with homogeneous highly dispersed palladium nanoparticles (PdNPs) by a novel single-step hydrothermal-assisted formic acid reduction reaction without the use of any surfactants. The structure, surface morphology, and elemental composition of the as-prepared PdNP-RGO electrocatalyst were extensively characterized. The PdNP-RGO electrocatalyst demonstrated outstanding electrocatalytic activity (8.65 mA/cm2) toward the methanol oxidation reaction (MOR) in an acidic medium that is 1.4 times higher than PdNP-decorated Vulcan XC72 (6.2 mA/cm2) and also comparable with that of Pd-based electrocatalysts in alkaline media from the previous reports. Furthermore, the as-prepared PdNP-RGO electrocatalyst also shows remarkable stability performance for the MOR in an acidic medium and thus offer new insights into the processing method of an outstanding electrocatalyst at the anode electrode in the direct methanol fuel cell with reasonable cost, clean and facile synthesis approach.Electrocatalyst, Electrocatalytic activityReduced graphene oxide (RGO) was successfully decorated with homogeneous highly dispersed palladium nanoparticles (PdNPs) by a novel single-step hydrothermal-assisted formic acid reduction reaction without the use of any surfactants. The structure, surface morphology, and elemental composition of the as-prepared PdNP-RGO electrocatalyst were extensively characterized. The PdNP-RGO electrocatalyst demonstrated outstanding electrocatalytic activity (8.65 mA/cm2) toward the methanol oxidation reaction (MOR) in an acidic medium that is 1.4 times higher than PdNP-decorated Vulcan XC72 (6.2 mA/cm2) and also comparable with that of Pd-based electrocatalysts in alkaline media from the previous reports. Furthermore, the as-prepared PdNP-RGO electrocatalyst also shows remarkable stability performance for the MOR in an acidic medium and thus offer new insights into the processing method of an outstanding electrocatalyst at the anode electrode in the direct methanol fuel cell with reasonable cost, clean and facile synthesis approach.