UV-LED as a new emerging tool for curable polyurethane acrylate hydrophobic coating
The elimination of mercury, low energy consumption, and low heat make the ultraviolet light-emitting diode (UV-LED) system emerge as a promising alternative to conventional UV-mercury radiation coating. Hence, a series of hydrophobic coatings based on urethane acrylate oligomer and fluorinated monom...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/94162/1/SitiKhairunisahGhazali2021_UVLEDasaNewEmergingTool.pdf http://eprints.utm.my/id/eprint/94162/ http://www.dx.doi.org/10.3390/polym13040487 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The elimination of mercury, low energy consumption, and low heat make the ultraviolet light-emitting diode (UV-LED) system emerge as a promising alternative to conventional UV-mercury radiation coating. Hence, a series of hydrophobic coatings based on urethane acrylate oligomer and fluorinated monomer via UV-LED photopolymerisation was designed in this paper. The presence of fluorine component at 1160 cm−1, 1235 cm−1, and 1296 cm−1 was confirmed by Fourier Transform Infra-Red spectroscopy. A considerably high degree C=C conversion (96–98%) and gel fraction (95–93%) verified the application of UV-LED as a new technique in radiation coating. It is wellaccepted that fluorinated monomer can change the surface wettability as the water contact angle of the coating evolved from 88.4° to 121.2°, which, in turn, reduced its surface free energy by 70.5%. Hence, the hydrophobicity of the coating was governed by the migration of the fluorine component to the coating surface as validated by scanning electron and atomic force microscopies. However, above 4 phr of fluorinated monomer, the transparency of the cured coating examined by UV-visible spectroscopy experienced approximately a 16% reduction. In summary, the utilisation of UV-LED was a great initiative to develop green aspect in photopolymerisation, particularly in coating technology. |
---|