Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction

The atmospheric particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) is one of the key indicators of air pollutants. Accurate prediction of PM2.5 concentration is very important for air pollution monitoring and public health management. However, the presence of noise in PM2.5 data serie...

詳細記述

保存先:
書誌詳細
主要な著者: Fu, Minglei, Le, Caowei, Fan, Tingchao, Prakapovich, Ryhor, Manko, Dmytro, Dmytrenko, Oleh, Lande, Dmytro, Shahid, Shamsuddin, Yaseen, Zaher Mundher
フォーマット: 論文
出版事項: Springer Science and Business Media Deutschland GmbH 2021
主題:
オンライン・アクセス:http://eprints.utm.my/id/eprint/94129/
http://dx.doi.org/10.1007/s11356-021-15574-y
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!