Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction

The atmospheric particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) is one of the key indicators of air pollutants. Accurate prediction of PM2.5 concentration is very important for air pollution monitoring and public health management. However, the presence of noise in PM2.5 data serie...

全面介紹

Saved in:
書目詳細資料
Main Authors: Fu, Minglei, Le, Caowei, Fan, Tingchao, Prakapovich, Ryhor, Manko, Dmytro, Dmytrenko, Oleh, Lande, Dmytro, Shahid, Shamsuddin, Yaseen, Zaher Mundher
格式: Article
出版: Springer Science and Business Media Deutschland GmbH 2021
主題:
在線閱讀:http://eprints.utm.my/id/eprint/94129/
http://dx.doi.org/10.1007/s11356-021-15574-y
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!