Device performance of silicene nanoribbon field-effect transistor under ballistic transport
Ballistic device performance of monolayer silicene nanoribbon (SiNR) field-effect transistors (FETs) is investigated in this paper. The electronic band structure of SiNR is calculated within the nearest neighbour tight-binding approximation. The top of the barrier ballistic transistor model is emplo...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/94020/1/ChuanMuWen2020_DevicePerformanceofSiliceneNanoribbon.pdf http://eprints.utm.my/id/eprint/94020/ http://www.dx.doi.org/10.1109/ICSE49846.2020.9166895 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ballistic device performance of monolayer silicene nanoribbon (SiNR) field-effect transistors (FETs) is investigated in this paper. The electronic band structure of SiNR is calculated within the nearest neighbour tight-binding approximation. The top of the barrier ballistic transistor model is employed to compute the current-voltage characteristics of SiNR FETs. This theoretical model shows that the SiNR FET can achieve on-to-off current ratio up to 105, subthreshold swing of 65.12 mV/dec, and drain-induced barrier lowering of 44.44mV/V. The relationship between the drain current and the oxide thickness is also discussed. The findings show that silicene is suitable for future nanoelectronic applications. |
---|