Towards multi robot task allocation and navigation using deep reinforcement learning
Developing algorithms for multi robot systems to reach target positions and navigate safely in the environment is an open field of research. Most systems treat Multi Robot Task Allocation (MRTA) and Multi Robot Path Planning (MRPP) as two separate steps each with its own set of algorithms in which t...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/93375/1/AElfakharany2019_TowardsMultiRobotTaskAllocation.pdf http://eprints.utm.my/id/eprint/93375/ http://dx.doi.org/10.1088/1742-6596/1447/1/012045 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Developing algorithms for multi robot systems to reach target positions and navigate safely in the environment is an open field of research. Most systems treat Multi Robot Task Allocation (MRTA) and Multi Robot Path Planning (MRPP) as two separate steps each with its own set of algorithms in which the MRTA algorithm assigns each robot to a task and the MRPP algorithm guides each robot through the environment towards the assigned goal position while avoiding both static and dynamic obstacles. In this paper, we present a method that combines both steps by using a deep reinforcement learning model. The model consists of a decentralized sensor level policy which outputs the robot's velocity to guide it through the environment towards the selected goal position and avoiding collisions. The model was trained in a simulation environment and all the robots are homogenous differential drive robots. The objective is to ensure that each robot reaches a unique goal position with the number of goal positions is equal to the number of robots. The results of training the policy in an environment is presented with both static and dynamic obstacles with four robots and four goal positions. |
---|