Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion
Due to the growing use of nanotechnology in the modern era, the application of nanomaterials in elastomers has also been increased. Although some limited experiments are available in the previous studies regarding the fracture behavior of rubber nanocomposites containing a crack, no criteria have be...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Elsevier B.V.
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/89440/ http://dx.doi.org/10.1016/j.acme.2019.09.007 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.89440 |
---|---|
record_format |
eprints |
spelling |
my.utm.894402021-02-22T01:47:34Z http://eprints.utm.my/id/eprint/89440/ Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion Heydari Meybodi, Mahdi Ayatollahi, Majid Reza Berto, Filippo Yahya, M. Yazid TJ Mechanical engineering and machinery Due to the growing use of nanotechnology in the modern era, the application of nanomaterials in elastomers has also been increased. Although some limited experiments are available in the previous studies regarding the fracture behavior of rubber nanocomposites containing a crack, no criteria have been presented so far. To fill this gap, the current research is devoted to develop a criterion for rupture assessment of rubber nanocomposites weakened by a crack. First, some fracture tests are performed on cracked rubber/clay nanocomposites. The prepared nanocomposites are made of ethylene–propylene-diene monomer/styrene-butadiene rubber/CLOISITE 15. Afterwards, the averaged strain energy density (ASED) criterion, as one of the most used energy-based criteria, is extended and utilized in nano-reinforced hyperelastic materials. The nearly uniaxial state of stress field next to the crack tip in rubber nanocomposites, which is the main prerequisite for the criterion extension, is proved by means of non-linear finite element modelling. Finally, the estimations of the criterion is compared with the corresponding experimental data and good agreement is achieved which reveals the high performance of the ASED criterion in the case of cracked rubbers filled with nanoparticles. Elsevier B.V. 2019-08 Article PeerReviewed Heydari Meybodi, Mahdi and Ayatollahi, Majid Reza and Berto, Filippo and Yahya, M. Yazid (2019) Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion. Archives of Civil and Mechanical Engineering, 19 (4). pp. 1458-1467. ISSN 1644-9665 http://dx.doi.org/10.1016/j.acme.2019.09.007 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Heydari Meybodi, Mahdi Ayatollahi, Majid Reza Berto, Filippo Yahya, M. Yazid Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion |
description |
Due to the growing use of nanotechnology in the modern era, the application of nanomaterials in elastomers has also been increased. Although some limited experiments are available in the previous studies regarding the fracture behavior of rubber nanocomposites containing a crack, no criteria have been presented so far. To fill this gap, the current research is devoted to develop a criterion for rupture assessment of rubber nanocomposites weakened by a crack. First, some fracture tests are performed on cracked rubber/clay nanocomposites. The prepared nanocomposites are made of ethylene–propylene-diene monomer/styrene-butadiene rubber/CLOISITE 15. Afterwards, the averaged strain energy density (ASED) criterion, as one of the most used energy-based criteria, is extended and utilized in nano-reinforced hyperelastic materials. The nearly uniaxial state of stress field next to the crack tip in rubber nanocomposites, which is the main prerequisite for the criterion extension, is proved by means of non-linear finite element modelling. Finally, the estimations of the criterion is compared with the corresponding experimental data and good agreement is achieved which reveals the high performance of the ASED criterion in the case of cracked rubbers filled with nanoparticles. |
format |
Article |
author |
Heydari Meybodi, Mahdi Ayatollahi, Majid Reza Berto, Filippo Yahya, M. Yazid |
author_facet |
Heydari Meybodi, Mahdi Ayatollahi, Majid Reza Berto, Filippo Yahya, M. Yazid |
author_sort |
Heydari Meybodi, Mahdi |
title |
Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion |
title_short |
Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion |
title_full |
Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion |
title_fullStr |
Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion |
title_full_unstemmed |
Rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion |
title_sort |
rupture assessment of rubber/clay nanocomposites containing a crack by means of an energy-based fracture criterion |
publisher |
Elsevier B.V. |
publishDate |
2019 |
url |
http://eprints.utm.my/id/eprint/89440/ http://dx.doi.org/10.1016/j.acme.2019.09.007 |
_version_ |
1692991784082210816 |
score |
13.211869 |