Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents
Adsorption of inorganic mercury [Hg(II)] and organic methylmercury [MeHg(II)] ions onto dye-affinity agrowaste (dye-AW) was investigated. The dye-affinity adsorbents were prepared by the chemical-thermal reaction between the agrowaste (AW) and dye solutions [i.e., Reactive Red 120 (RR), Reactive Bla...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
John Wiley and Sons Inc.
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/89238/ http://dx.doi.org/10.1002/ep.12915 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.89238 |
---|---|
record_format |
eprints |
spelling |
my.utm.892382021-02-22T06:01:15Z http://eprints.utm.my/id/eprint/89238/ Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents Saman, Norasikin Johari, Khairiraihanna Song, Shiow Tien Kong, Helen Cheu, Siew Chin Mat, Hanapi TP Chemical technology Adsorption of inorganic mercury [Hg(II)] and organic methylmercury [MeHg(II)] ions onto dye-affinity agrowaste (dye-AW) was investigated. The dye-affinity adsorbents were prepared by the chemical-thermal reaction between the agrowaste (AW) and dye solutions [i.e., Reactive Red 120 (RR), Reactive Black B (RB), Methylene Blue (MB), and Methyl Orange (MO)] under an alkaline condition. An almost perfect removal of Hg(II) was observed for all adsorbents, while for MeHg(II), the dye-affinity adsorbents have a higher removal efficiency than a pristine adsorbent. The maximum adsorption capacity (Q e, max ) of mercury ions onto the Reactive Red 120-modified AW (RR-AW) was 2.60 mmol g −1 for Hg(II) and 0.76 mmol g −1 for MeHg(II). The adsorption rate of Hg(II) was faster than MeHg(II), and both kinetic data followed the pseudo-second order kinetic model with the diffusion steps controlled by the film diffusion. The regenerated adsorbent showed very encouraging results especially toward Hg(II). The promising results were also obtained by using oilfield produced water (OPW) and natural gas condensate (NGC) samples. These studies finally demonstrated that the agricultural wastes initially loaded with dyes have the potential to be good mercury adsorbents. John Wiley and Sons Inc. 2019-03 Article PeerReviewed Saman, Norasikin and Johari, Khairiraihanna and Song, Shiow Tien and Kong, Helen and Cheu, Siew Chin and Mat, Hanapi (2019) Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents. Environmental Progress and Sustainable Energy, 38 (S1). S54-S67. ISSN 1944-7442 http://dx.doi.org/10.1002/ep.12915 DOI:10.1002/ep.12915 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Saman, Norasikin Johari, Khairiraihanna Song, Shiow Tien Kong, Helen Cheu, Siew Chin Mat, Hanapi Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents |
description |
Adsorption of inorganic mercury [Hg(II)] and organic methylmercury [MeHg(II)] ions onto dye-affinity agrowaste (dye-AW) was investigated. The dye-affinity adsorbents were prepared by the chemical-thermal reaction between the agrowaste (AW) and dye solutions [i.e., Reactive Red 120 (RR), Reactive Black B (RB), Methylene Blue (MB), and Methyl Orange (MO)] under an alkaline condition. An almost perfect removal of Hg(II) was observed for all adsorbents, while for MeHg(II), the dye-affinity adsorbents have a higher removal efficiency than a pristine adsorbent. The maximum adsorption capacity (Q e, max ) of mercury ions onto the Reactive Red 120-modified AW (RR-AW) was 2.60 mmol g −1 for Hg(II) and 0.76 mmol g −1 for MeHg(II). The adsorption rate of Hg(II) was faster than MeHg(II), and both kinetic data followed the pseudo-second order kinetic model with the diffusion steps controlled by the film diffusion. The regenerated adsorbent showed very encouraging results especially toward Hg(II). The promising results were also obtained by using oilfield produced water (OPW) and natural gas condensate (NGC) samples. These studies finally demonstrated that the agricultural wastes initially loaded with dyes have the potential to be good mercury adsorbents. |
format |
Article |
author |
Saman, Norasikin Johari, Khairiraihanna Song, Shiow Tien Kong, Helen Cheu, Siew Chin Mat, Hanapi |
author_facet |
Saman, Norasikin Johari, Khairiraihanna Song, Shiow Tien Kong, Helen Cheu, Siew Chin Mat, Hanapi |
author_sort |
Saman, Norasikin |
title |
Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents |
title_short |
Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents |
title_full |
Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents |
title_fullStr |
Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents |
title_full_unstemmed |
Enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents |
title_sort |
enhanced adsorption capacity and selectivity toward inorganic and organic mercury ions from aqueous solution by dye-affinity adsorbents |
publisher |
John Wiley and Sons Inc. |
publishDate |
2019 |
url |
http://eprints.utm.my/id/eprint/89238/ http://dx.doi.org/10.1002/ep.12915 |
_version_ |
1692991763143196672 |
score |
13.211869 |