Unifying the seeds auto generation (SAGE) with knee cartilage segmentation framework: data from the osteoarthritis initiative
Purpose: Manual segmentation is sensitive to operator bias, while semiautomatic random walks segmentation offers an intuitive approach to understand the user knowledge at the expense of large amount of user input. In this paper, we propose a novel random walks seed auto-generation (SAGE) hybrid mode...
保存先:
主要な著者: | Gan, Hong Seng, Sayuti, Khairil Amir, Ramlee, Muhammad Hanif, Lee, Yeng Seng, Wan Mahmud, Wan Mahani Hafizah, Abdul Karim, Ahmad Helmy |
---|---|
フォーマット: | 論文 |
出版事項: |
Springer Verlag
2019
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/89236/ http://dx.doi.org/10.1007/s11548-019-01936-y |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
From classical to deep learning: review on cartilage and bone segmentation techniques in knee osteoarthritis research
著者:: Gan, Hong Seng, 等
出版事項: (2020) -
Multilabel graph based approach for knee cartilage segmentation: Data from the osteoarthritis initiative
著者:: Gan, H. S., 等
出版事項: (2015) -
Analysis of parameters' effects in semi-automated knee cartilage segmentation model: Data from the osteoarthritis initiative
著者:: Gan, H. S., 等
出版事項: (2016) -
Knee cartilage segmentation using multi purpose interactive approach
著者:: Gan, Hong Seng
出版事項: (2016) -
Automated knee bone segmentation and visualisation using mask RCNN and marching cube: Data from the osteoarthritis initiative
著者:: Patekar, Rahul, 等
出版事項: (2022)