The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level
Many different Artificial Neural Networks (ANN) models of flood have been developed for forecast updating. However, the model performance, and error prediction in which forecast outputs are adjusted directly based on models calibrated to the time series of differences between observed and forecast v...
保存先:
主要な著者: | Faruq, A., Abdullah, S. S., Marto, A., Bakar, M. A. A., Hussein, S. F. M., Razali, C. M. C. |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Universitas Ahmad Dahlan
2019
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/88600/1/AmrulFaruq2019_TheUseofRadialBasisFunction.pdf http://eprints.utm.my/id/eprint/88600/ https://dx.doi.org/10.26555/ijain.v5i1.280 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Electricity consumption forecasting using Nonlinear Autoregressive with External (Exogeneous) input neural network
著者:: K. G., Tay, 等
出版事項: (2019) -
Forecasting particulate matter concentration using nonlinear autoregression with exogenous input model
著者:: M.I. Rumaling, 等
出版事項: (2021) -
Forecasting particulate matter (PM10) concentration: A radial basis function neural network approach
著者:: Abdullah S., 等
出版事項: (2023) -
Non-Linear Autoregressive with exogenous input (Narx) chiller plant prediction model
著者:: Azlee, Zabidi, 等
出版事項: (2021) -
A NO-LINEAR HYBRID MODEL FOR MULTI-STEP-AHEAD FORECASTING
OF CHAOTIC TIME-SERIES
著者:: ABDULKADIR, SAID JADID
出版事項: (2015)