UV-curable resin microlenses on optical pillars for optical interconnect
A unique combination of pillar and microlens is demonstrated to enable easy coupling between VCSEL layers and a multi-layer/channel optical printed wiring board. A number of uniform pillars having a microlens on the top were fabricated on a substrate using UV-curable resin by mask-transfer self-writ...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Institute of Physics Publishing
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/88421/ http://dx.doi.org/10.7567/1347-4065/ab24b8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.88421 |
---|---|
record_format |
eprints |
spelling |
my.utm.884212020-12-15T00:06:15Z http://eprints.utm.my/id/eprint/88421/ UV-curable resin microlenses on optical pillars for optical interconnect Baharudin, Nurul Atiqah Fujikawa, Chiemi Mikami, Osamu Idrus, Sevia M. Ambran, Sumiaty T Technology (General) A unique combination of pillar and microlens is demonstrated to enable easy coupling between VCSEL layers and a multi-layer/channel optical printed wiring board. A number of uniform pillars having a microlens on the top were fabricated on a substrate using UV-curable resin by mask-transfer self-written waveguide and dipping methods. Ray-trace analysis indicated that the focusing characteristics could be controlled by adjusting the pillar height and the microlens radius of curvature. Tolerance coupling efficiency between pillar height and microlens radius of curvature is acceptable. Light propagation measurements showed that uniform power was obtained from all top microlenses of the 3 × 4 pillar array on a slide glass. Studies of the reproducibility of microlens-on-pillar fabrication using the dipping method show a positive outcome. As a result, optical coupling efficiency is expected to be improved in optical interconnect applications. Institute of Physics Publishing 2019 Article PeerReviewed Baharudin, Nurul Atiqah and Fujikawa, Chiemi and Mikami, Osamu and Idrus, Sevia M. and Ambran, Sumiaty (2019) UV-curable resin microlenses on optical pillars for optical interconnect. Japanese Journal of Applied Physics, 58 (SJ). SJJB02-SJJB02. ISSN 0021-4922 http://dx.doi.org/10.7567/1347-4065/ab24b8 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
T Technology (General) |
spellingShingle |
T Technology (General) Baharudin, Nurul Atiqah Fujikawa, Chiemi Mikami, Osamu Idrus, Sevia M. Ambran, Sumiaty UV-curable resin microlenses on optical pillars for optical interconnect |
description |
A unique combination of pillar and microlens is demonstrated to enable easy coupling between VCSEL layers and a multi-layer/channel optical printed wiring board. A number of uniform pillars having a microlens on the top were fabricated on a substrate using UV-curable resin by mask-transfer self-written waveguide and dipping methods. Ray-trace analysis indicated that the focusing characteristics could be controlled by adjusting the pillar height and the microlens radius of curvature. Tolerance coupling efficiency between pillar height and microlens radius of curvature is acceptable. Light propagation measurements showed that uniform power was obtained from all top microlenses of the 3 × 4 pillar array on a slide glass. Studies of the reproducibility of microlens-on-pillar fabrication using the dipping method show a positive outcome. As a result, optical coupling efficiency is expected to be improved in optical interconnect applications. |
format |
Article |
author |
Baharudin, Nurul Atiqah Fujikawa, Chiemi Mikami, Osamu Idrus, Sevia M. Ambran, Sumiaty |
author_facet |
Baharudin, Nurul Atiqah Fujikawa, Chiemi Mikami, Osamu Idrus, Sevia M. Ambran, Sumiaty |
author_sort |
Baharudin, Nurul Atiqah |
title |
UV-curable resin microlenses on optical pillars for optical interconnect |
title_short |
UV-curable resin microlenses on optical pillars for optical interconnect |
title_full |
UV-curable resin microlenses on optical pillars for optical interconnect |
title_fullStr |
UV-curable resin microlenses on optical pillars for optical interconnect |
title_full_unstemmed |
UV-curable resin microlenses on optical pillars for optical interconnect |
title_sort |
uv-curable resin microlenses on optical pillars for optical interconnect |
publisher |
Institute of Physics Publishing |
publishDate |
2019 |
url |
http://eprints.utm.my/id/eprint/88421/ http://dx.doi.org/10.7567/1347-4065/ab24b8 |
_version_ |
1687393569502920704 |
score |
13.222552 |