Spectral-based convolutional neural network without multiple spatial-frequency domain switchings
Recent researches have shown that spectral representation provides a significant speed-up in the massive computation workload of convolution operations in the inference (feed-forward) algorithm of Convolutional Neural Networks (CNNs). This approach results in reducing the computational complexity of...
保存先:
主要な著者: | Ayat, Sayed Omid, Hani, Mohamed Khalil, Ab. Rahman, Ab. Al-Hadi, Abdellatef, Hamdan |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier B. V.
2019
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/87452/ http://dx.doi.org/10.1016/j.neucom.2019.06.094 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A compact spectral model for convolutional neural network
著者:: Ayat, Sayed Omid, 等
出版事項: (2023) -
Stochastic computing correlation utilization in convolutional neural network basic functions
著者:: Abdellatef, Hamdan, 等
出版事項: (2018) -
Accurate and compact convolutional neural network based on stochastic computing
著者:: Abdellatef, Hamdan, 等
出版事項: (2022) -
A low-complexity complex-valued activation function for fast and accurate spectral domain convolutional neural network
著者:: Rizvi, S. M., 等
出版事項: (2021) -
Hardware and software co-simulation platform for convolution or correlation based image processing algorithms
著者:: Ayat, Sayed Omid
出版事項: (2014)