Characterization of kaolin clay treated with ground granulated blast-furnace slag
This study was carried out to identify the optimization of GGBS improved the properties of kaolin clay. It is in line with the sustainability approach which concern with the safe reuse, management and disposal of waste material. GGBS collected from local supplier in Johor Bahru was used to improve t...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/87187/1/YousefHamdanYousefMSKA2019.pdf http://eprints.utm.my/id/eprint/87187/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:134221 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study was carried out to identify the optimization of GGBS improved the properties of kaolin clay. It is in line with the sustainability approach which concern with the safe reuse, management and disposal of waste material. GGBS collected from local supplier in Johor Bahru was used to improve the geotechnical properties of kaolin clay supplied from a local supplier in Johor Bahru, Malaysia. Treated specimens were prepared at different percentages of GGBS 5%, 10%, 15%, 20%, and 25% and at different curing periods of 7, 14, and 28 days, respectively. Particle size distribution, Atterberg limits, and specific gravity tests were conducted on kaolin clay. Standard proctor test was conducted on both untreated and treated kaolin clay prior preparation of specimen for unconfined compressive strength test (UCS). In addition, consolidated undrained (CU) triaxial tests were conducted for details strength characteristics on development of the treated kaolin clay. It was found that the maximum dry density and the optimum moisture content do not change significantly with the increase of GGBS content. In addition, unconfined compressive strength for the treated kaolin clay shows the highest strength gained after 28 days. Treated kaolin clay with 25% GGBS shows the highest strength gained which shows the highest UCS is 8.75 MPa. At 7 days curing period consolidated undrained (CU) Triaxial test showed that the effective cohesion and friction angle increment of treated kaolin clay with 20% reach up to 417.73%, and 148.17% respectively, of the untreated kaolin clay effective cohesion and friction angle. Overall, the addition of GGBS is very effective in the treatment of kaolin clay due to its promising strength at earlier stages. |
---|