Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure
Unlike graphene which requires redesigned fabrication technique, silicene is predicted to be compatible with the silicon wafer technology. However, similar to graphene, the gapless properties of silicene hinder its application as field-effect transistors (FETs). By employing nearest neighbour tight-...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier B. V.
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/86310/ https://dx.doi.org/10.1016/j.physe.2019.113731 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.86310 |
---|---|
record_format |
eprints |
spelling |
my.utm.863102020-10-13T01:54:03Z http://eprints.utm.my/id/eprint/86310/ Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure Chuan, M. W. Wong, K. L. Hamzah, A. Rusli, S. Alias, N. E. Lim, C. S. Tan, M. L. P. TK Electrical engineering. Electronics Nuclear engineering Unlike graphene which requires redesigned fabrication technique, silicene is predicted to be compatible with the silicon wafer technology. However, similar to graphene, the gapless properties of silicene hinder its application as field-effect transistors (FETs). By employing nearest neighbour tight-binding (NNTB) approach and Landuaer-Büttiker formalism, the analytical equations for electronic band structure, density of states (DOS), intrinsic carrier concentration, intrinsic velocity and ideal ballistic I–V characteristics have been derived. The simulated results using MATLAB show that a band gap of 0.78eV has been induced in uniformly doped silicene with aluminium (AlSi3NW) in the zigzag direction. The device performance metrics extracted from the current-voltage (I–V) characteristics are subthreshold swing of 60mV/decade and threshold voltage of 0.65V under ideal conditions at room temperature. The results indicate that AlSi3NW device possesses good channel control and effective switching behaviour. The proposed model demonstrates that AlSi3NW is a potential candidate for future nanoelectronic applications. Elsevier B. V. 2020-02 Article PeerReviewed Chuan, M. W. and Wong, K. L. and Hamzah, A. and Rusli, S. and Alias, N. E. and Lim, C. S. and Tan, M. L. P. (2020) Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure. Physica E: Low-Dimensional Systems and Nanostructures, 116 . ISSN 1386-9477 https://dx.doi.org/10.1016/j.physe.2019.113731 DOI:10.1016/j.physe.2019.113731 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Chuan, M. W. Wong, K. L. Hamzah, A. Rusli, S. Alias, N. E. Lim, C. S. Tan, M. L. P. Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure |
description |
Unlike graphene which requires redesigned fabrication technique, silicene is predicted to be compatible with the silicon wafer technology. However, similar to graphene, the gapless properties of silicene hinder its application as field-effect transistors (FETs). By employing nearest neighbour tight-binding (NNTB) approach and Landuaer-Büttiker formalism, the analytical equations for electronic band structure, density of states (DOS), intrinsic carrier concentration, intrinsic velocity and ideal ballistic I–V characteristics have been derived. The simulated results using MATLAB show that a band gap of 0.78eV has been induced in uniformly doped silicene with aluminium (AlSi3NW) in the zigzag direction. The device performance metrics extracted from the current-voltage (I–V) characteristics are subthreshold swing of 60mV/decade and threshold voltage of 0.65V under ideal conditions at room temperature. The results indicate that AlSi3NW device possesses good channel control and effective switching behaviour. The proposed model demonstrates that AlSi3NW is a potential candidate for future nanoelectronic applications. |
format |
Article |
author |
Chuan, M. W. Wong, K. L. Hamzah, A. Rusli, S. Alias, N. E. Lim, C. S. Tan, M. L. P. |
author_facet |
Chuan, M. W. Wong, K. L. Hamzah, A. Rusli, S. Alias, N. E. Lim, C. S. Tan, M. L. P. |
author_sort |
Chuan, M. W. |
title |
Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure |
title_short |
Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure |
title_full |
Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure |
title_fullStr |
Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure |
title_full_unstemmed |
Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure |
title_sort |
electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure |
publisher |
Elsevier B. V. |
publishDate |
2020 |
url |
http://eprints.utm.my/id/eprint/86310/ https://dx.doi.org/10.1016/j.physe.2019.113731 |
_version_ |
1681489480319500288 |
score |
13.211869 |