OpenFOAM implementation for the study of streamwise vortex-induced vibration-based energy harvester for sensor networks

The study of streamwise vortex induced vibration has reached a level of maturity that allows it to be harnessed to generate power. However, studies have primarily concentrated on the variables that measured through point-based instruments. This severely limits our understanding of the fluid forcing...

Full description

Saved in:
Bibliographic Details
Main Authors: Khairi, Ahmad Adzlan Fadzli, Mat Ali, Mohamed Sukri
Format: Article
Language:English
Published: Penerbit Akademia Baru 2018
Subjects:
Online Access:http://eprints.utm.my/id/eprint/85323/1/AhmadAdzlan2018_OpenFOAMImplementationforTheStudyofStreamwiseVortex.pdf
http://eprints.utm.my/id/eprint/85323/
http://www.akademiabaru.com/doc/ARFMTSV48_N2_P165_175.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study of streamwise vortex induced vibration has reached a level of maturity that allows it to be harnessed to generate power. However, studies have primarily concentrated on the variables that measured through point-based instruments. This severely limits our understanding of the fluid forcing mechanism that results in the vibration of the elastically supported bluff body. We proposed the usage of computational fluid dynamics: the open source C++ libraries of OpenFOAM. To implement this successfully to the streamwise vortex-induced vibration problem, which involves near-wall fluid-structure interaction, we explored the method of dynamic mesh handling in OpenFOAM for six degrees of freedom motion of a rigid body fully submerged in fluid. Finally, we argued for the usage of arbitrarily coupled mesh interface to overcome the problem of severely distorted mesh in tight gaps between two walls. We run a short simulation to test this setup and found that the case runs uninterrupted, unlike its former counterpart that relies solely on cell displacement diffusion, suggesting the potential success of a further converged solution of the setup when running on a more powerful machine.