Central double cross-validation for estimating parameters in regression models
The ridge regression, lasso, elastic net, forward stagewise regression and the least angle regression require a solution path and tuning parameter, λ, to estimate the coefficient vector. Therefore, it is crucial to find the ideal λ. Cross-validation (CV) is the most widely utilized method for choosi...
保存先:
第一著者: | Chye, Rou Shi |
---|---|
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2016
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/80959/2/ChyeRouShiMFS2016.pdf http://eprints.utm.my/id/eprint/80959/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:120286 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Generalized Cross-Validation for Simultaneous Optimization of Tuning Parameters in Ridge Regression
著者:: Roozbeh, Mahdi, 等
出版事項: (2020) -
Parameter estimation of stochastic differential equation : Bayesian regression
著者:: Abd.Rahman, Haliza, 等
出版事項: (2010) -
New approaches in estimating linear regression model parameters in the presence of multicollinearity and outliers
著者:: Al-Mash, Mohammad Sabry Abo
出版事項: (2017) -
Comparing least-squares and goal programming estimates of linear regression parameter.
著者:: Ahmad, Maizah Hura, 等
出版事項: (2005) -
Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
著者:: Kafi, Dano Pati, 等
出版事項: (2015)