Central double cross-validation for estimating parameters in regression models
The ridge regression, lasso, elastic net, forward stagewise regression and the least angle regression require a solution path and tuning parameter, λ, to estimate the coefficient vector. Therefore, it is crucial to find the ideal λ. Cross-validation (CV) is the most widely utilized method for choosi...
Saved in:
主要作者: | Chye, Rou Shi |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/80959/2/ChyeRouShiMFS2016.pdf http://eprints.utm.my/id/eprint/80959/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:120286 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Generalized Cross-Validation for Simultaneous Optimization of Tuning Parameters in Ridge Regression
由: Roozbeh, Mahdi, et al.
出版: (2020) -
Parameter estimation of stochastic differential equation : Bayesian regression
由: Abd.Rahman, Haliza, et al.
出版: (2010) -
New approaches in estimating linear regression model parameters in the presence of multicollinearity and outliers
由: Al-Mash, Mohammad Sabry Abo
出版: (2017) -
Comparing least-squares and goal programming estimates of linear regression parameter.
由: Ahmad, Maizah Hura, et al.
出版: (2005) -
Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
由: Kafi, Dano Pati, et al.
出版: (2015)